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The supercell slab is the structural model used in first-principles simulations to determine thermodynamic,
kinetic, and electronic properties of surfaces and interfaces. We present a general algorithm to reorient
bulk unit cells using basis and covariant transformations — the first step for constructing surface slabs of
any Miller index from bulk unit cells of any Bravais lattice. We further review and discuss subtleties of surface
slab creation relevant for performing efficient and accurate calculations of surface properties. We also dem-
onstrate that the nonconvergence of surface energy with respect to slab thickness can be mitigated if the bulk
reference energy is calculated from a surface-oriented bulk unit cell, which eliminates Brillouin zone integra-

tion errors between the slab and the bulk. Using Pt(111) and Si(111) surfaces as examples, this technique
converges the surface energy with respect to slab thickness requiring only one bulk and one relatively thin
slab calculation, with moderate k-point densities. This process is about an order of magnitude more efficient
than popular surface energy convergence techniques involving multiple slab calculations.
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1. Introduction

A detailed understanding of surface properties is crucial to many
technologies, including catalysis, energy storage, materials synthesis,
nanomaterials, as well as to the basic science of surface charge trans-
fer and aqueous stability."?> Despite the importance of surface
science, experimental determination of surface thermodynamics and
electronic structures can be very challenging. For this reason, first-
principles calculations of surface properties have become a crucial
tool for surface scientists, as they can determine facet-specific surface
energies,® surface energies as a function of chemical potential>®
nanocrystal morphologies,”® surface electronic structures® charge
transfer dynamics,'®!! work functions,'? structural reconstructions,'®
interlayer relaxations,'* adsorbate interactions,'>'® and more.!”

The standard structure used to calculate surface properties from
first-principles is the surface slab — a supercell representing an infinite
two-dimensional thin film oriented to expose the facet of interest, sepa-
rated from periodic images by a large vacuum. The slab should be thick
enough such that there is no interaction between opposite surfaces
through the bulk, and the vacuum distance between slabs should be
increased until there is no more interaction between adjacent slabs. For
a converged, clean slab in vacuum, the surface energy can be defined as

1
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where A is the area of the surface unit cell, Eg,p, is the energy of the slab
supercell, Ep is the bulk energy per atom, and N is the number of atoms
in the surface slab. The 1/2 pre-factor accounts for the two surfaces of a
slab. If the surface can exchange molecular or atomic species with an ex-
ternal reservoir, then the surface grand potential is:

1
Y=524 <Eslab_NEbulk_Zi: Ni:“i) (2)

where excess or deficient atoms are accounted for by a chemical
potential term for the N; atoms of species i with chemical potential ;.

Surfaces in realistic environments exist in a variety of physically-
relevant configurations, compounding the complexity and cost of a
comprehensive theoretical investigation. Nanocrystals usually feature
multiple nonequivalent low-energy surface orientations. Each orien-
tation can have multiple terminations, and each termination can
potentially be stabilized by a variety of external adsorbates from the
chemical environment. A robust and efficient surface generation and
calculation scheme can enable a complete exploration of the wide va-
riety of possible surface structures, and is necessary to enable large-
scale investigations of material surfaces under realistic conditions.

In this paper, we describe an approach to surface calculations that in-
cludes both generalized surface slab creation and rapid surface energy
convergence with respect to slab thickness. Along with describing slab
creation and convergence, many subtleties of surface calculations are
reviewed and discussed. These algorithms are implemented in the
open-source Python Materials Genomics (Pymatgen) package,'® which
powers the public first-principles database, The Materials Project.!®
Our analysis of the slab model and slab convergence techniques is
also applicable to surface slabs generated from other modeling
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tools (including ASE,2® ACONVASP,?! Crystal09,2? GDIS,>*> Materials
Studio?* and METADISE?®).

2. Generalizing surface slab creation

Surface slabs for the (100), (010), or (001) surfaces of a unit cell can
be easily generated by constructing a supercell extended along the
[100], [010], or [001] vector, respectively. A vacuum is then added in
the same direction and the corresponding atomic coordinates are
rescaled appropriately. However, this approach cannot be used to
model other surface orientations, as no supercell manipulation of the
original unit cell can result in a surface slab consistent both with other
orientations of interest and with the periodic boundary conditions.

We present an algorithm to construct surface slabs with any Miller
index orientation from a bulk unit cell of any Bravais lattice. The
essence of the algorithm is to transform the basis of the bulk unit
cell such that the (001) plane of the new basis is oriented parallel to
the Miller plane of interest. The transformed basis will therefore
have two Bravais lattice vectors, v; and vy, span the plane of the
desired surface orientation, and a third Bravais lattice vector, vs, ori-
ented out of the plane. The atomic positions are then redefined with
respect to the new basis using a covariant transformation. Standard
surface slab creation procedures can then be performed on the
transformed unit cell to prepare a slab structure ready for input into
a first-principles calculation package.

2.1. Surface-oriented basis transformation

Surfaces within a crystal are typically defined with respect to the
conventional unit cell,*® using the Miller index notation. Miller nota-
tion allows for intuitive visualization of various surfaces (Fig. 1.a), but
simulation of surfaces in atomistic codes requires a transformed cell
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in which the basal plane is coincident with the Miller index of interest
(Fig. 1.b).

In order to preserve the Bravais lattice after unit cell transforma-
tion, the new basis vectors must span Bravais lattice points. The
basis vectors v; and v, are generated from three Bravais lattice points
that lie within the desired Miller plane, such that v; = p, — p;, and
Vv, = p3 — p1. The following is one possible solution for a set of
three points corresponding to a given (hkl) Miller index. The exis-
tence of this solution signifies the completeness of this algorithm in
being able to solve for any surface orientation.

For a Miller index containing no zeros, (hkl), the following three
Bravais points are each collinear to one of the three axes of the con-
ventional unit cell, at a distance corresponding to the reciprocal of
their index:

P = (M/hja
P2 = (M/K)b
p3 = (M/l)e

where a, b, and ¢ correspond to the basis vectors of the conventional
unit cell, and M is the least common multiple of h, k and . For example,
for the (321) surface, the three points would p; = 2a, p, = 3b, and
ps = 6¢. Even with primitive cell reduction, high-index surfaces can
resultin very large two-dimensional surface unit cells.

For a Miller index containing one zero, (hk0), these three points
can be given with

p; = (M/hja
p; = (M/k)b
ps =p1 +C

Fig. 1. Constructing the non-polar termination of the (1014) surface of a-Fe,0s. a) The (1014) surface is highlighted in the «-Fe,05 crystal structure. b) The bulk unit cell is
basis-transformed such that the (001) plane of the new basis is coplanar with the desired (1014) surface. c) The transformed surface-oriented basis is extended using the supercell
slab construction to create a six-layer surface slab with a 10 A vacuum, exposing a non-polar termination. d) The 120 atom slab is reduced by symmetry to the 40 atom primitive
surface unit cell. Details of this transformation are described in the Supplementary Information.
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And for a Miller index containing two zeros, (h00), these three
points can be given as simply

p, =(0,0.0)
p,=b
p;=C

These points for (hk0) and (h00) can be permuted for (hOl), (Okl),
and (0kO), (00I), as necessary.

These three Bravais points do not represent the minimal possible
surface unit cell, but the primitive surface unit cell can be solved
from this initial surface slab using unit cell reduction algorithms.?’
This is particularly valuable if a primitive unit cell exists within the
bulk conventional unit cell. However, this unit cell reduction is best
performed after the complete surface slab is generated, as the vacuum
breaks the symmetry perpendicular to the surface, so the primitive
cell reduction is correctly confined to only the two dimensions of
the surface plane (Fig. 1c-d).

After the two basis vectors in the plane of the surface are deter-
mined, a third vector vs out of the surface is chosen. This Bravais lat-
tice vector v3 does not have to be normal to the surface plane, in fact,
it can only be normal in the special case that for any possible vs there
exists an integer q such that:

(q(v3-vy)) mod1 = (q(v5-v,)) mod1 = 0. 3)

This condition can be satisfied for all surfaces in cubic lattices and
for hexagonal {100} surfaces, but it is usually impossible to meet in
the general case, such as for lower-symmetry Bravais lattices.

That being said, because surface slabs must be thick enough for
convergence, it is best that v3 achieves a maximum slab layer height
for a minimal unit cell volume. Therefore, vs should be the shortest
Bravais lattice vector that is as orthogonal to v; and v, as possible.
This choice of v3 minimizes the total number of atoms necessary for
a converged slab, reducing calculation time. A maximally-orthogonal
vz also minimizes dispersion effects during k-point integration —
this is discussed later in the Surface Brillouin zone integration section.

With vy, v,, and v; determined, the surface-oriented basis trans-
formation is complete: Two basis vectors span the surface with the
desired Miller index, and the third basis vector will later be extended
with supercell techniques to generate the surface slab. It is best to
express the transformed basis such that v; and v, are in the x-y
plane, as it allows for more convenient interpretation of the surface
unit cell. This can be done by projecting the three basis vectors onto
an orthonormal basis generated around v; and v, by the Gram-
Schmidt procedure.

2.2. Redefining atomic coordinates

The fractional atomic coordinates of the atoms in the system can
be redefined with respect to the new surface-oriented basis by use
of a covariant transformation. If C is the 3 x 3 matrix that maps
the conventional bulk basis to the surface-oriented basis, such that
S = (B, where S is the surface-oriented basis, and B is the conven-
tional bulk basis, then the new coordinates A’ can be obtained from
the old coordinates A with the covariant transformation:

Al = {(CT)”AT}T. 4)

There are several subtleties to the covariant transformation. The
volume of the surface-oriented basis may be an integer multiple of the
volume of the original basis, such that a covariant transformation on
only the conventional unit cell atoms is not sufficient. One must provide
enough atoms to completely fill the transformed basis, and then
double-counted atoms and excess atoms outside of the transformed
basis should be eliminated.

Also, the transformation must preserve the chemical identity
of the elements. An elegant way to perform this operation is by
redefining the atomic positions A as an N x 4 matrix, such that the
fourth column consists of numbers representing chemical identity.
Then, C can be the 4 x 4 matrix, defined such that

Cc— |:C30><3 (1)] 5)

At this point, both the basis and the atoms have been basis
transformed with respect to a surface orientation. Several important
properties will remain invariant between the original and transformed
unit cell: 1) the translational and point-group symmetries, 2) the total
energy per formula unit, barring minor numerical integration errors,
and 3) the simulated X-ray diffraction pattern. Checking that these
properties have not changed is an effective validation of a successful
transformation.

We provide a detailed example implementation of the described al-
gorithm to construct the surface-oriented bulk unit cell of the (1014)
surface of a-Fe,05 (Fig. 1b) in the Supplementary Information. Also in-
cluded are 2 MATLAB scripts: 1) to determine a maximally-orthogonal
v; and 2) to covariantly transform atomic coordinates between bases.

If a transformation is successful, surface slabs can be created from
these reoriented bulk unit cells by creating a supercell extended in
the [001] direction, and then adding a vacuum in the same direction.
The vacuum distance should be extended until the surface property of
interest converges. A vacuum length of approximately 10 A is suffi-
cient for convergence of most surface properties. Converging the
thickness of the slab is the subject of the second half of this paper.

With the surface-oriented basis transformation, redefined atomic
positions, and relaxed terminations, the surface slab is sufficiently
prepared for atomistic simulations. These clean surface slabs can be
used to calculate the properties of surfaces in vacuum, and can also
serve as template substrates for the interaction of surfaces with a
chemical environment.

2.3. Terminations and non-equivalent surfaces

There are usually a number of non-unique termination layers for a
given surface orientation. Terminations can be enumerated by placing
the origin of the bulk basis at varying positions along v3, modifying all
the fractional z coordinates such that:

For z, in{all unique z values} : z,.,m' = (Zgrom—20) mod 1.

There is a fundamental challenge in modeling termination-specific
surface energies under some crystallographic symmetries. While real
surfaces terminate one side of a semi-infinite bulk, surface slab struc-
tures are thin-films with a bulk region sandwiched by two surface ter-
minations. A tacit assumption from the 1/2 pre-factor in Eq. (1) is that
the slab has identical terminations, such that both terminations
contribute equally to the resulting surface energy. Unfortunately,
identical terminations only occur when the center of the slab has an
appropriate symmetry operation, that is, an inversion point symme-
try, a 2, 4, or 6-fold rotation axis perpendicular to the slab normal,
or a mirror/glide plane parallel to the slab surface.?® If these required
symmetries are not at the center of the slab, then the energy calculat-
ed from Eq. (1) is instead the ‘cleavage energy’, which is the revers-
ible work per area required to separate an infinite bulk along that
plane. The cleavage energy is equal to the surface energy when the
terminations are identical, but the converse is not necessarily true.

In the case of a solid with charged species, certain terminations
can result in a dipole moment in the direction of the vacuum. For ex-
ample, the stoichiometric MgO (111) surface exhibits alternating
charged layers of Mg?™* and 0%~ ions, which forms a polar surface.
Under periodic boundary conditions, this electric dipole will lead to
a divergence of the electrostatic energy. Tasker has categorized the
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surfaces of ionic solids, and for these unstable polar surfaces (also
called ‘Tasker Type-3 surfaces’), he proposes a workaround to this
electric field catastrophe by moving half the charged species on one
surface to the other side, effectively removing the electric dipole
(resulting in a ‘Tasker 2b surface’).?°

Although the Tasker 3 to Tasker 2b reconstruction removes the di-
pole while preserving stoichiometry, the stability and growth of real
polar surfaces is a complicated physical process that might not be
best described using this reconstruction. The polar surfaces of strong-
ly ionic rock-salt oxides like MgO (111) facet into a staircase pattern
of low-energy {100} surfaces, and for more covalent oxides like NiO,
the polar (111) surfaces undergo complicated microfaceting within an
octopolar reconstruction.>° The polar (0001) surface of wurtzite ZnO is
electrostatically stabilized by a precise Zn:O surface stoichiometry,
achieved by ~30 A wide, one-layer-high triangular terraces.>! Molecu-
lar crystals with polar building blocks have been shown in Monte
Carlo simulations to undergo fundamental growth instabilities, mitigat-
ing dipole moments with entropy-driven 180° building block reversals
resulting in micro-polarized domains.>2 The dipole can also be mitigat-
ed by adsorption of charged species from the environment.>> These
studies suggest that an examination of polar surfaces may be
more involved than a Tasker 2b reconstruction.

2.4. Eliminating duplicate orientations and terminations

Identifying families of equivalent surface orientations via crystal sym-
metry eliminates the need to recalculate duplicate surfaces. Equivalent
surface orientations can be determined from the point-group symme-
tries of a crystal — inversion, rotation, rotoinversion, and mirror planes.
Each of these point group operations can be represented by a transfor-
mation matrix, but these matrices can only be applied to vectors, and
not to Miller indices directly. Therefore, to span a family of equivalent
Miller indices, these symmetry operations must be applied to either
the surface normal vector of a Miller plane, or to the two surface vectors
decomposed from a Miller index, as shown previously. The equivalent
Miller indices can then be solved from these transformed vectors, and re-
dundant orientations can be skipped.

Various terminations of the same orientation can also be duplicate.
Two terminations can yield trivially identical surface slabs, but two termi-
nations are also identical if they differ from each other by a glide plane or
screw axis. The existence of glide planes or screw axes for a given orien-
tation in a crystal can be determined a priori from its space group. Surfaces
identical through a glide plane, such as the two terminations of the Ana-
tase TiO, (100) surface (Fig. 2), can be detected if one slab can be made
trivially identical to the other by redefining its origin at another atomic
site in its x-y plane. Terminations that are identical through a screw axis
can be detected similarly, by first applying a rotation operation to one of
the slabs through the axis normal to the x-y plane. Accounting for these
coupled translation and rotation symmetries will further eliminate dupli-
cate terminations, saving computation time.

2.5. Relaxation and reconstruction

To alleviate the excess energy of broken bonds, surface atoms tend
to relax to more energetically favorable positions. For many solids,
this process is a simple compression or expansion of the layers near
the surface, known as surface relaxation. It is important to allow for
these surface relaxations in atomistic calculations, as surface energy
calculations in the literature show that relaxations can reduce the
unrelaxed surface energy by approximately 30%. Low-energy electron
diffraction data on several metals and ionic compounds suggest that
it is usually sufficient to only relax the three outermost surface
layers.>#353637 The remaining atoms in the bulk portion of the sur-
face slab can otherwise be frozen in place to expedite calculation
time without affecting the resulting energetics.®

The atoms at the surface can also adopt a structure topologically
different than the bulk structure, a process known as surface recon-
struction. For example, dangling atoms on the Silicon (100) surface
will reduce their energy by forming two-atom dimers,?® with a prim-
itive surface unit cell twice that of the unreconstructed case (a
so-called 2 x 1 reconstruction). Spontaneous reconstruction of clean
surfaces can be driven by stress,*>#14243 or can be to restore the
lowest-energy electron configuration of the surface species.*t
Adsorption of external molecular and atomic species can also trigger
surface reconstruction.*>*® There are ways to efficiently probe
whether a surface has a tendency to reconstruct: imaginary modes
in the surface phonon dispersion indicates a driving force for
stress-driven reconstruction, and an excess of dangling bonds or
unsatisfied atomic orbitals can suggest an electronically-driven sur-
face reconstruction.*” Actually finding the low-energy reconstructed
surfaces involves exploring a broad surface structure-space, and is
outside the scope of this paper, although algorithms have been pro-
posed to systematically determine these structures.*4°

3. Surface Brillouin zone integration

Due to the unusual geometry of surface slabs under the con-
straints of periodic boundary conditions, special attention must be
paid to the k-space integration of the surface Brillouin zone (SBZ).
We present a set of rules regarding choice of k-point grid, integration
method, and bulk unit cell orientation, to achieve numerical conver-
gence of surface energies at minimal computational costs.

The k-point grid for surface slabs is generated as ki x ky x 1,
where the direction with one k-point corresponds to the real-space
vector in the direction of the vacuum. Because the SBZ is two dimen-
sional, the energy should be integrated with only one k-point in the
direction out of the surface so that there is no dispersion through
the vacuum. By definition, k3 is orthogonal to v; and v, but this
does not require vs to be orthogonal to v; and v,. However, if vs is
not orthogonal to v; and v», then dispersion effects in the k; and k,
directions are non-zero, but negligible — our calculations show that
varying the angle of v3 versus the surface normal does not change
resulting surface energies more than 0.01 J/m? which is on the
order of numerical integration errors.

Important byproducts of this two-dimensional k-point grid are
restrictions placed on Brillouin zone integration. Although the tetra-
hedron method with Blochl corrections®® is a standard integration
method for insulators and semiconductors, the one k-point in the

[100]

Fig. 2. The two possible terminations of the Anatase TiO, (100) surface are identical
under periodic boundary conditions by a glide plane translation in the [001] direction.
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direction of the vacuum is often inconsistent with the requirements
for subdividing the Brillouin zone into tetrahedrons. Therefore, the
integration of the surface Brillouin zone is best performed with
finite-temperature smearing methods, such as Gaussian smearing or
the method of Methfessel-Paxton.>! An instructive investigation
of the smearing parameter can be found in Appendix A of Da Silva
et al.>? One must also be mindful that the k-point sampling accurately
reflects the reciprocal Bravais lattice of the SBZ — for example, the
(111) surfaces of FCC and BCC crystals are hexagonal and require a
gamma-centered odd k-point grid.

3.1. Consistent k-point integration for rapid slab convergence

As described in the Introduction, the strategy to obtain converged
surface slab energies is to increase the vacuum distance between
slabs until there is no more interaction between adjacent periodic
images, and to increase the slab thickness until there is no interac-
tion between opposite surfaces through the bulk. A peculiar but
well-documented phenomenon is that for some surfaces, as the
thickness of the slab is increased, the calculated surface energy
does not converge. This nonconvergence was first documented by
Boettger>> and was later explored by Fiorentini and Methfessel®?,
both sets of authors providing numerical solutions involving multi-
ple slab calculations to circumvent this nonconvergence. Da Silva et
al. also addressed this nonconvergence by demonstrating that con-
vergence can be achieved by a single bulk and a single slab calcula-
tion using very dense k-point grids — from 16 x 16 x 1 up to
32 x 32 x 1.5 We will show that it is possible to achieve rapidly
converged surface energies with a single bulk and a single slab calcu-
lation, while maintaining a moderate k-point grid.

As observed in the literature, surface energy nonconvergence
arises when the well-converged bulk energy is different than the
incremental increase of slab energy per layer — e.g. the bulk energy
of the surface slab. While the difference between the converged
bulk energy and the slab-layer energy may be very small, unless
they are identical, the surface energy calculated from Eq. (1) will
never converge with thickness.

Boettger proposed a workaround by taking the bulk energy as the
difference in energy between a large slab and an incrementally larger
slab, by the expression:

Epuie = Egiap(N + 1) —Egjq (N) = AEg /AN (6)

where N is the number of layers in the slab. This approach is able to
converge on a surface energy with reasonably few slab layers, albeit
requiring several slab calculations. However, for numerous systems,
the surface energies calculated using the Boettger bulk energy were
discovered to oscillate diminishingly around the converged value as
the number of layers is increased, due to so-called ‘quantum
size-effects’, requiring relatively thick slabs to have confidently con-
verged surface energies.”>>%>7>8 Fiorentini and Methfessel also pop-
ularized a technique to extract the bulk energy involving multiple
slab calculations by using a linear relation of the surface slab energy
as

Egap(N) = 27y + NEp (7)

and fitting a line through a collection of slab energies, then using the
slope of this line as the bulk energy.’® Both of these techniques are
able to improve convergence considerably, however, they are expen-
sive calculations, as they require multiple supercell slab calculations.
Finally, Da Silva demonstrates that it is possible to attain converged
surface energies simply by resorting to a very dense k-point grid,>?
which is also computationally expensive as calculation time scales
linearly with the number of k-points in the irreducible Brillouin zone.

The fundamental reason why the converged bulk energy can differ
from the slab layer energy is because automatically generated k-point
grids sample the Brillouin zones of the slab and the bulk slightly dif-
ferently. Integrating the bulk energy from these inconsistent distribu-
tions of k-points results in the bulk energy difference at the root of
surface energy nonconvergence.

One can automatically generate the same k-point grids for both
bulk and surface slabs by calculating the bulk energy from the
surface-oriented basis transformed bulk unit cell. In this way, the
k-point sampling of the Brillouin zone in the k; and k, directions
will be identical between the bulk and surface Brillouin zone.

To demonstrate the effectiveness of this approach, we perform
calculations on the clean, unrelaxed, unreconstructed Si(111) and
Pt(111) surfaces, representing both a semiconductor surface and a
free-electron metal surface. The (111) surfaces of cubic crystals are
notorious for nonconvergence with respect to the number of layers
in the slab, notable examples including Li(111), Al(111), Fe(111),
and Co(111).>® By our reasoning, the cause of the nonconvergence
is the three-fold axis along the [111] direction, which results in a hex-
agonal surface Brillouin zone that is inconsistent with the standard
k-point sampling of cubic primitive cells.

We prepare the silicon and platinum (111) unit cells using the
basis transformation approach described earlier, orienting v; and v,
of the new basis in the (111) plane of the conventional unit cell and
choose the [111] direction lattice vector as vs.

This silicon primitive surface unit cell contains six atoms. For the
silicon calculation, the surface slabs start with the primitive unit cell
and increase up to sixteen two-atom bilayers (32 atoms). For plati-
num, the slabs start with the three atom primitive cell, and increase
to fifteen atomic layers.

For the hexagonal surface Brillouin zones, we adopt a Gamma-
point centered 7 x 7 x 1 k-point mesh for the slab calculations.
Maintaining k-point mesh consistency in the k; and k; directions be-
tween the surface and bulk calculations, we use a 7 x 7 x 7 k-point
mesh for the bulk calculations. Because the number of atoms per
layer is even for the Si(111) case, ideally we would use a 7 x 7 x 8
mesh for the bulk, but this is inconsistent with the Gamma-point cen-
tering. This technical limitation results in a minor numerical error.

All calculations were performed using the Vienna Ab-Initio Software
Package (VASP). We used the projector augmented wave (PAW)>°
method with the Perdew-Burke-Erzhenhoff (PBE)®° generalized-
gradient approximation. Plane-wave basis cutoff energies were calcu-
lated at 125% of the maximum recommended cutoff energy. Brillouin
zones were sampled using the Methfessel-Paxton scheme. Bulk unit
cells and atoms were initially relaxed until forces were 1E-6 eV/A.
Surface slabs were not relaxed or reconstructed, as the relationship
between k-point grid and surface energy convergence is not affected
by surface structure.

We calculate the bulk energy for Eq. (1) in five ways: 1) as calcu-
lated from the primitive bulk unit cells, 2) as calculated from the
cubic conventional unit cells (8 atoms for silicon, 4 atoms for plati-
num), 3) as the difference in slab energy between an N layer and
N + 1 layer slab (the Boettger relation), 4) the slope of the fitted
line between multiple slabs (the Fiorentini and Methfessel relation)
and 5) the 7 x 7 x 7 bulk energy from the (111) basis transformed
unit cells (this work). These bulk energies are shown in Table 1, and
surface energies as a function of the number of layers in the slab are
plotted in Fig. 3 for silicon and Fig. 4 for platinum.

We begin with the silicon (111) unreconstructed (1 x 1) unit cell
as a representative model (Fig. 3). There are two non-equivalent ter-
minations for this orientation — we choose the termination with no
dangling silicon atoms, which is lower in energy.

Nonconvergence of the surface energy is observed when one uses
silicon bulk energies calculated from both the primitive and conven-
tional unit cells, as expected. Although they diverge in opposite direc-
tions, it is clear that neither is close to convergence using even a
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30-atom thick slab. The most converged relation is the linear-fit scheme
by Fiorentini and Methfessel, settling on the value of 1.654 J/m? as early
as 3 layers. However, this bulk energy was fit to energies from slabs up
to 10-bilayer thick. The Boettger bulk energy also calculates a surface
energy to be about 1.65 J/m? while displaying the characteristic
oscillations described previously, although the oscillations are smaller
than the DFT error (<0.015 J/m?). Like the linear-interpolation method,
the Boettger method requires multiple slab calculations to achieve the
desired convergence.

A single high-density k-point calculation is performed, as sug-
gested by Da Silva et al., witha 17 x 17 x 1 grid for a 16 layer surface
slaband a 17 x 17 x 17 grid for the primitive bulk cell. This results in
a surface energy of 1.652 J/m?, consistent with the linear fit method,
but at a computational cost the same order of magnitude as all twelve
slab calculations with 7 x 7 x 1 k-point grids. It is not surprising that
resorting to an ultra-dense k-point grid obviates the numerical inte-
gration errors between the bulk and surface Brillouin zones, but it is
an unnecessarily expensive solution.

The basis transformed bulk energy calculation proposed in this
work is also able to calculate a surface energy of 1.65 J/m?, using
only a 7 x 7 x 7 mesh bulk calculation and a single 7 x 7 x 1 mesh
slab calculation. This value is converged for slabs as thin as seven
bilayers thick. There is a slight linear nonconvergence of the surface
energy, although the surface energy only changes by 0.003 J/m?
over 10 bilayers. As described earlier, this slight nonconvergence is
most likely the result of being unable to use an even number of
k-points in the ks direction. This is the most efficient method listed
to achieve the converged surface energy value, requiring an order of
magnitude less computation time than the comparably converged
linear-fit scheme.

We next turn to platinum (Fig. 4). The surfaces of platinum are
particularly well-studied by first-principles calculations, as platinum
is an important catalysis material.®"®> In many ways, the Pt(111) sur-
face behaves similarly to Si(111) with respect to the many conver-
gence schemes. Again, the surface energy does not converge when
using a bulk energy calculated from the primitive and conventional
bulk unit cells. The Boettger relation surface energy oscillates from
quantum size effects, although the oscillations have large amplitudes
on the order of 0.4 J/m?, much greater than for silicon. The amplitude
of the oscillations do decrease slightly for AN = 2 and AN = 3 in the
Boettger relation of Eq. (6) (not shown), although they are still great-
er than 0.2 J/m? in amplitude.

The linear-fit method is again successful at converging the surface
energy, calculating 1.30 J/m? with an error of 0.02 J/m? at 7 layers
thick, although the bulk energy is fit to slabs with thicknesses from
7 to 14 layers. It is notable that platinum converges with a relatively
sparse k-point grid, even though metals often need far higher
k-point densities to achieve convergence of bulk properties. To test
the effect of k-point density, as per Da Silva et al., the surface energy
of Pt(111) was calculated from a 7 layer slab with a 32 x 32 x 1
k-point grid, and a primitive bulk unit cell with a 32 x 32 x 32
k-point grid, resulting in 1.33 J/m?2. Again, the high k-point density
method is effective, but costly. Using the (111) basis-transformed
bulk energy, the surface energy is converged to 1.31 J/m?, with an
error of 0.02 J/m?, using only a 3-atom 7 x 7 x 7 mesh bulk calcula-
tion and a single 7 x 7 x 1 mesh slab calculation. This value is
achieved for slabs as thin as seven atoms thick, again demonstrating
that a basis-transformed bulk can achieve rapid convergence at
minimal computational cost.

Our calculated surface energy of 1.31 J/m? differs slightly from the
1.49 J/m? value of Singh-Miller et al. and Chepulskii et al., which also
use VASP Projector Augmented Wave psuedopotentials with the PBE
pseudopotential. Along with the fact that this study does not include
interlayer relaxations, differences can also arise from differences in
input parameters, such as the choice of Gaussian smearing and sym-
metry enforcements of Brillouin zone sampling.

Table 1

Bulk energies of silicon and platinum calculated in a variety of manners. The bulk energy
from the Boettger relation oscillates and is not included. The high k-point calculations
affect the surface slabs more than they affect the bulk calculations, and so high-density
bulk calculations are not included here either.

Cell k-point mesh Bulk eV/atom

Silicon (111) Platinum (111)
Primitive MP 8 x 8 x 8 —5.41779 —4.1041
Conventional MP8 x 8 x 8 —5.42153 —4.1049
Linear-fit G7x7x1 —5.4201 —4.1224
Basis transformed G7x7x7 —5.41976 —4.1247

As presented here, the use of a basis transformed bulk unit cell to
obtain the bulk energy for surface energy calculations represents the
most computationally efficient way to rapidly achieve converged
surface energies, even with moderate k-point grids. The root of this
success lies in the identical k-point integration of the Brillouin zone
in the k; and k, directions for both the slab and the bulk. We also
highlight the importance of using odd, gamma-centered hexagonal
k-point grids for surface Brillouin zones possessing three or six-fold
rotational symmetry, such as the (111) surface of cubic crystals. We
anticipate that the oversight in making these simple adjustments is
the root of much numerical integration error evident in the literature.

4. Conclusion

We have explored a process of constructing surface slab structures
that is general across various orientations, crystal structures, termina-
tions and symmetries. The approach is automatable, and a successful
implementation enables the unrestricted generation of all potentially
relevant surfaces of a material, including the high-index surfaces that
are often omitted. Relevant thermodynamic, electronic, and structural
properties can then be calculated from these constructed surfaces.

We have further identified that a surface-oriented bulk unit cell
has the same 2D surface Brillouin zone as the surface slab constructed
from it. By calculating the bulk energy from the basis transformed
unit cell, numerical inconsistencies in Brillouin zone integration
between the surface slab and bulk are eliminated, resulting in a
rapid convergence of surface energy with respect to slab thickness.
This convergence is achieved with a single bulk calculation and a
single relatively thin slab calculation, using moderate k-point densi-
ties. This can be an order of magnitude more efficient than other
convergence schemes that have been previously proposed.
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Fig. 3. Surface energies calculated using five different bulk energy values. The silicon
(111) transformed basis method is shown to demonstrate rapid convergence at a minimal
computation cost of one 7 x 7 x 7 mesh bulk calculation and one 7 x 7 x 1 mesh
16-atomic layer slab calculation.
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Fig. 4. Platinum (111) surface energies calculated using five different bulk energy
values. The platinum (111) transformed basis method is converged within 0.02 J/m?
at a cost of one 7 x 7 x 7 mesh 3-atom bulk calculation and one 7 x 7 x 1 mesh 7
atomic layer thick slab calculation.

We have thus presented a scheme for the efficient creation and
convergence of surface slabs. Combining the generality of the above
surface generation algorithm with the efficiency of the rapid conver-
gence scheme enables robust large-scale investigations of surfaces
under a variety of realistic conditions.
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