

Figure 1: Symmetry unique TB elements of graphene π-system.

1-param - 3-param - 4-param
exact

Figure 2: Energy bands of graphene π-system for a series of models of increasing accuracy.

§3. TB for graphene π-system

The symmetry unique TB elements are shown in Fig. 1. Because there are 5 high-symmetry energy reference values at 3 k-points: Γ, K and M, the largest 'fittable' model includes the onsite energy ε_{0} and 4 transfer integrals including 3 directly interacting pairs: t_{1}, t_{2}, t_{3}. The 4 th integral should be t_{4} to balance the accuracy of diagonal and off-diagonal Hamiltonian matrix elements containing even and odd (by chemical distance) transfer integrals respectively. The resulting Hamiltonian is given by

$$
\begin{gather*}
H_{11}=H_{22}=\varepsilon_{0}+2 t_{2}\left(\cos k_{1}+\cos k_{2}+\cos k_{3}\right)+2 t_{4}\left(\cos \left(k_{1}-k_{2}\right)+\cos \left(k_{2}-k_{3}\right)+\cos \left(k_{3}-k_{1}\right)\right) \tag{3.1}\\
H_{12}=t_{1}\left(1+\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{2}}\right)+t_{3}\left(\mathrm{e}^{\mathrm{i}\left(k_{1}-k_{2}\right)}+\mathrm{e}^{\mathrm{i} k_{3}}+\mathrm{e}^{-\mathrm{i} k_{3}}\right) \tag{3.2}
\end{gather*}
$$

where $k_{3}=-k_{1}-k_{2}$. Therefore $E_{1,2}=H_{11} \mp\left|H_{12}\right|$. In high-symmetry direction $k_{1}=k_{2}=k$:

$$
\begin{gather*}
H_{11}=\varepsilon_{0}+2 t_{2}(2 \cos k+\cos 2 k)+2 t_{4}(1+2 \cos 3 k) \tag{3.3}\\
H_{12}=t_{1}(1+2 \cos k)+t_{3}(1+2 \cos 2 k) \tag{3.4}
\end{gather*}
$$

In high-symmetry direction $k_{1}=k, k_{2}=0$:

$$
\begin{align*}
H_{11}= & \varepsilon_{0}+2 t_{2}(1+2 \cos k)+2 t_{4}(2 \cos k+\cos 2 k) \tag{3.5}\\
& H_{12}=t_{1}\left(2+\mathrm{e}^{\mathrm{i} k}\right)+t_{3}\left(2 \mathrm{e}^{\mathrm{i} k}+\mathrm{e}^{-\mathrm{i} k}\right) \tag{3.6}
\end{align*}
$$

In high-symmetry points $(k=\{0, \pi, 2 \pi / 3\})$:

$$
\begin{gather*}
E(1 / 3,1 / 3)=\varepsilon_{0}-3 t_{2}+6 t_{4} \tag{3.7}\\
E_{1,2}(0,0)=\varepsilon_{0}+6 t_{2}+6 t_{4} \mp\left(3 t_{1}+3 t_{3}\right) \tag{3.8}\\
E_{1,2}(1 / 2,0)=E_{1,2}(1 / 2,1 / 2)=\varepsilon_{0}-2 t_{2}-2 t_{4} \mp\left(t_{1}-3 t_{3}\right) . \tag{3.9}
\end{gather*}
$$

In particular, if we fit parameters at these high-symmetry points to $\mathrm{PBE} / \mathrm{p} 2 \mathrm{p}$ calculations, we obtain (in eV):

$$
\begin{equation*}
\varepsilon_{0}=-3.87, t_{1}=-2.87, t_{2}=0.21, t_{3}=-0.27, t_{4}=0.06 \tag{3.10}
\end{equation*}
$$

giving band structure visually coinciding with the exact one. Although t_{4} is small, neglecting it results in large error at M-point. The minimal model (t_{1} only) is still qualitatively accurate. Exact TB integrals fade with distance quickly:

$$
\begin{gather*}
\varepsilon_{0}=-3.778, t_{1}=-2.887, t_{2}=0.218, t_{3}=-0.239 \tag{3.11}\\
t_{4}=0.046, t_{5 c}=-0.029, t_{4 b}=-0.015 \tag{3.12}\\
t_{3 b}=0.004, t_{5 b}=0.004, t_{6}=0.003, t_{6 b}=-0.002, t_{5}=0.001, \ldots \tag{3.13}
\end{gather*}
$$

