

Figure 3: Symmetry unique TB elements of graphene σ-VB.

Figure 4: Energy bands of graphene σ-VB for a series of models of increasing accuracy.

§4. TB for graphene σ-VB

The symmetry unique TB elements are shown in Fig. 3. There are 7 high-symmetry energy reference values at 3 k-points: Γ, K and M . At our best, we use 5 -parameter model including the onsite energy ε_{0} and 5 independent transfer integrals: $t_{1}, t_{2}, t_{2 b}, t_{3}$ and $t_{4 d}$. Other nonzero integrals include $t_{3 b}=-t_{3} / 2, t_{3 c}=t_{3} / 2$, $t_{4 c}=t_{3} / 2, t_{4}=-t_{3} / 3, t_{5}=t_{3} / 9, t_{6}=-t_{3} / 27$. This model fits high-symmetry points with 10 meV accuracy. With up to third-order terms, the Hamiltonian is given by

$$
\begin{gather*}
H_{11}\left(k_{1}, k_{2}, k_{3}\right)=\varepsilon_{0}+2 t_{2}\left(\cos k_{1}+\cos k_{2}\right)+2 t_{3 c} \cos k_{3}, \tag{4.1}\\
H_{12}=t_{1}\left(1+\mathrm{e}^{\mathrm{i} k_{2}}\right)+t_{2 b}\left(\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{3}}\right)+t_{3}\left(\mathrm{e}^{-\mathrm{i} k_{2}}+\mathrm{e}^{\mathrm{i} 2 k_{2}}\right)+t_{3 b}\left(\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{3}}+\mathrm{e}^{\mathrm{i}\left(k_{2}-k_{1}\right)}+\mathrm{e}^{\mathrm{i}\left(k_{2}-k_{3}\right)}\right), \tag{4.2}\\
H_{22}\left(k_{1}, k_{2}, k_{3}\right)=H_{11}\left(k_{2}, k_{3}, k_{1}\right), \quad H_{33}\left(k_{1}, k_{2}, k_{3}\right)=H_{11}\left(k_{3}, k_{1}, k_{2}\right), \tag{4.3}\\
H_{23}\left(k_{1}, k_{2}, k_{3}\right)=H_{12}\left(k_{2}, k_{3}, k_{1}\right), \quad H_{31}\left(k_{1}, k_{2}, k_{3}\right)=H_{12}\left(k_{3}, k_{1}, k_{2}\right), \tag{4.4}
\end{gather*}
$$

where $k_{3}=-k_{1}-k_{2}$. In high-symmetry points:

$$
\begin{align*}
E_{1,2}(1 / 3,1 / 3) & =\varepsilon_{0}+t_{1}-2 t_{2}-2 t_{2 b}-2 t_{3}+2 t_{3 b}-t_{3 c}, \tag{4.5}\\
E_{3}(1 / 3,1 / 3) & =\varepsilon_{0}-2 t_{1}-2 t_{2}+4 t_{2 b}+4 t_{3}-4 t_{3 b}-t_{3 c}, \tag{4.6}\\
E_{1}(0,0) & =\varepsilon_{0}+4 t_{1}+4 t_{2}+4 t_{2 b}+4 t_{3}+8 t_{3 b}+2 t_{3 c}, \tag{4.7}\\
E_{2,3}(0,0) & =\varepsilon_{0}-2 t_{1}+4 t_{2}-2 t_{2 b}-2 t_{3}-4 t_{3 b}+2 t_{3 c}, \tag{4.8}\\
E_{1}(1 / 2,0) & =\varepsilon_{0}+2 t_{1}-2 t_{2 b}+2 t_{3}-4 t_{3 b}-2 t_{3 c}, \tag{4.9}\\
E_{2}(1 / 2,0) & =\varepsilon_{0}-4 t_{2}+2 t_{3 c}, \tag{4.10}\\
E_{3}(1 / 2,0) & =\varepsilon_{0}-2 t_{1}+2 t_{2 b}-2 t_{3}+4 t_{3 b}-2 t_{3 c}, \tag{4.11}
\end{align*}
$$

In particular, if we fit 5 -parameter model to $\mathrm{PBE} / \mathrm{p} 2 \mathrm{p}$ calculations, we obtain (in eV):

$$
\begin{equation*}
\varepsilon_{0}=-14.97, t_{1}=-2.19, t_{2}=0.55, t_{2 b}=-0.52, t_{3}=-0.14, t_{4 d}=0.03, \tag{4.13}
\end{equation*}
$$

giving band structure visually coinciding with the exact one. If we neglect 4 -order integrals we come to reasonably accurate 3 -parameter model: t_{1}, t_{2}, t_{3} with $t_{2 b}=-t_{2}, t_{3 b}=-t_{3} / 2$ and $t_{3 c}=t_{3} / 2$. The minimal is the 2-parameter model: t_{1} and t_{2} with $t_{2 b}=-t_{2}$. Exact TB integrals fade with distance quickly:

$$
\begin{gather*}
\varepsilon_{0}=-14.965, t_{1}=-2.162, t_{2}=0.555, t_{2 b}=-0.522, \tag{4.14}\\
t_{3}=-0.157, t_{3 b}=0.072, t_{3 c}=-0.082, t_{4}=0.049, t_{4 c}=-0.049 \tag{4.15}\\
t_{4 d}=0.024, t_{5 c}=-0.020, t_{4 b}=-0.010, t_{6}=0.008, t_{5 b}=0.005, t_{6 b}=-0.002, \ldots \tag{4.16}
\end{gather*}
$$

