

Tutorial 3: Molecules with DFT Lab 3. Gaussian

The authors: PhD Dmitry Govorov PhD Arseniy Burov

November, 2023

Tutorial 3 agenda

1. Prerequisites for Lab3

a. DFT for molecules

b. Set-up your environment

2. Lab 3. Gaussian

- a. How to set-up your lab
- b. Units
- c. Basic commands and functions
- d. Lab tasks

Gaussian-type orbitals (GTO)

Idea: Fit Slater-type atomic orbitals with a superposition of Gaussian orbitals

$$\varphi(x, y, z; \{\alpha\}, i, j, k) = \sum_{a=1}^{M} c_a \phi(x, y, k)$$

- GTO's are "atomic orbital-like".
- Compact basis set (approx. 15-25 functions per atom).
- Analytic integration possible for many operators. Optimal for regular grids.
- Fourier transform is again a Gaussian.
- Compact support (finite extend)

- to improve.

$$z; \alpha_a, i, j, k)$$

Non-orthogonal basis.

• Linear dependencies for larger basis sets. Complicated to generate and no easy way

Basis set superposition error (BSSE). Molecules (wavefunction tails) and solids have different requirements.

Gaussian-type orbitals (GTO)

Radial part
$$\Phi(\mathbf{r}) = R_l(r)Y_{lm}(r)$$

In Cartesian coordinates: $\Phi(x, y, z; \alpha, i, j, k) = \left(\frac{2\alpha}{\pi}\right)^{3/4} \left[\frac{(8\alpha)^i}{(2i)!}\right]$

Spherical harmonic θ, ϕ)

$$\frac{\alpha^{i+j+k}i!j!k!}{i!(2j)!(2k)!} \Big]^{1/2} x^{i}y^{j}z^{k}e^{-\alpha(x^{2}+y^{2}+z^{2})}$$

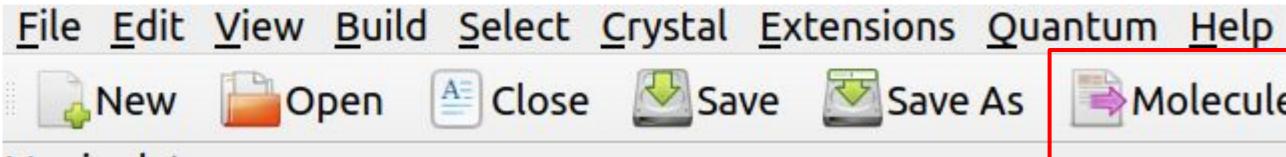
Gaussian-type orbitals (GTO)

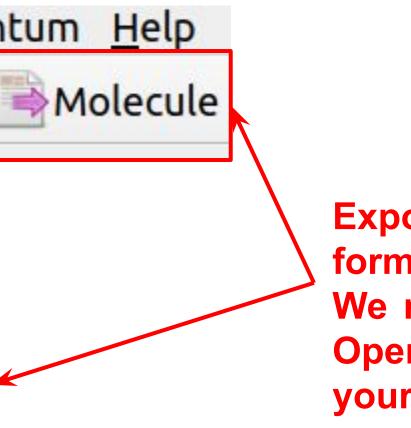
 $\Phi_{\rm GTO} = N x^l y^m z^n e^{-\alpha r^2}$

x, *y*, *z* – Cartesian coordinates of nucleus l, m, n – angular momenta l + m + m = L -total angular momentum *L* = *o*: s-orbital L = 1: p_X, p_Y, p_Z - orbitals L = 2: five *d*-orbitals *L* = 3: seven *f*-orbitals

Ideas behind the Lab 3

- Learn how to perform DFT calculations for molecules
- **Get familiar** with localized basis set (Gaussian-type orbitals)
- **Get familiar** with calculations, using hybrid functionals
- **Compare** the results of different-level methods: Quantum chemistry (DFT) calculations vs semi-empirical


Construction of molecules for Gaussian



Avogadro is an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, bioinformatics, materials science, and related areas. It offers flexible high quality rendering and a powerful plugin architecture.

GROMOS96 format	
Gaussian Input	
Gaussian Z-Matrix Input	
Gaussian cube format	
Ghemical format	

Export structure in the format of Gaussian. We recommend to use **OpenBabel** to open your structure and to export it.

Lab 3. Set up Gaussian and files

Settings the Lab on the Virtual Machine

Credentials for the Virtual Machine: 'your_login'@10.30.16.178 'your password'

Download archive with Lab files for benzene.

Upload the archive to the Virtual Machine:

scp lab3_benzene.zip a.burov@10.30.16.178:

Login to the Virtual Machine and unzip the archive:

unzip lab3_benzene.zip

Lab 3. Gaussian basics

Gaussian units

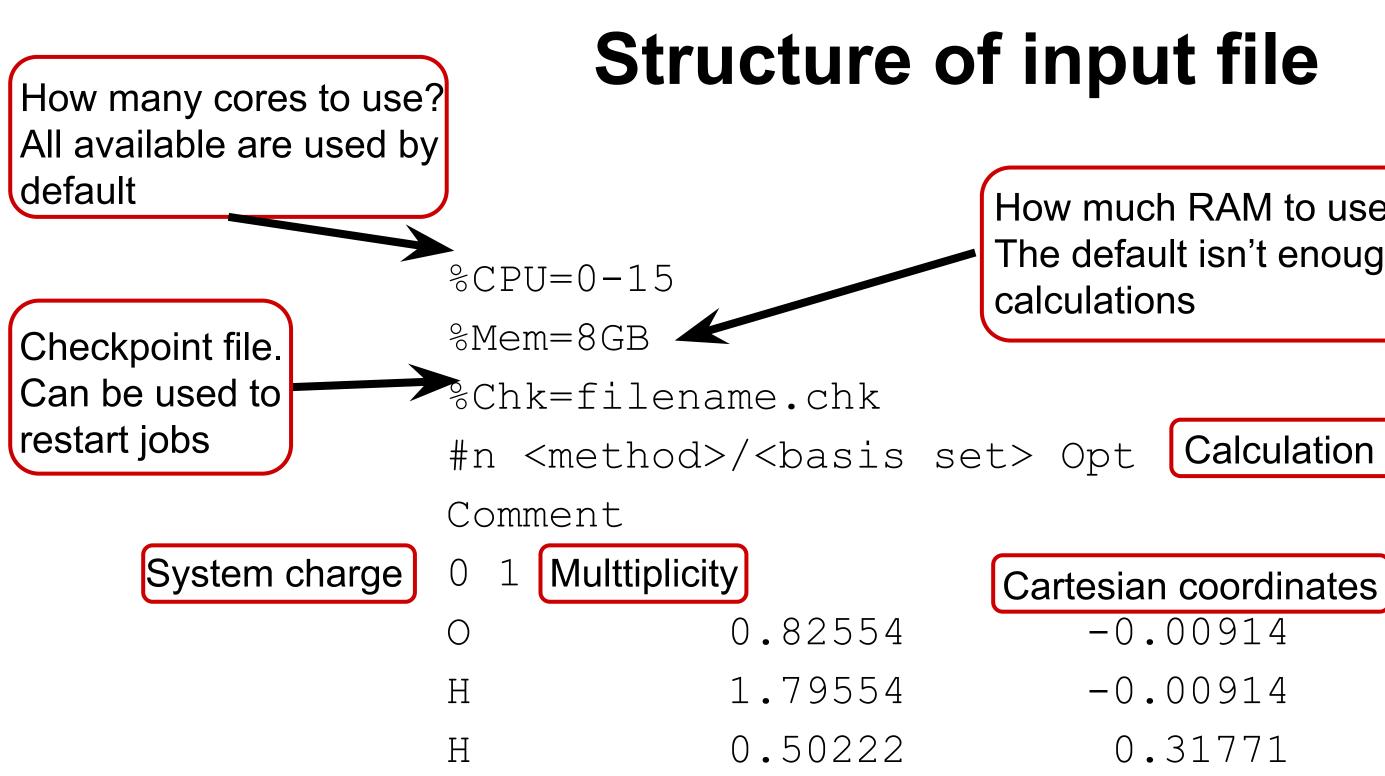
Mass	—	atomic mass units
Temp	_	Κ
Energy	—	atomic units (Hartree), cm ⁻¹ (for IR,
		eV and nm for TDDFT
Distance	_	Å by <u>default</u> , converted to Bohr for
Time	—	very seldom used, 25 attoseconds i
Force	—	atomic units
Pressure	—	atm
Charge	_	elementary charge
Dipole	—	Debye

Raman)

r calculations in <u>BOMD</u>

How to use Gaussian

To find input files for your calculations, you need go to *lab3_benzene/sampleinputs*


To run:

g16 <*input file.gau*> or <*input file.gjf*> or <*input file.com*>

.log file is automatically created

Windows version has a GUI

How much RAM to use? The default isn't enough for large

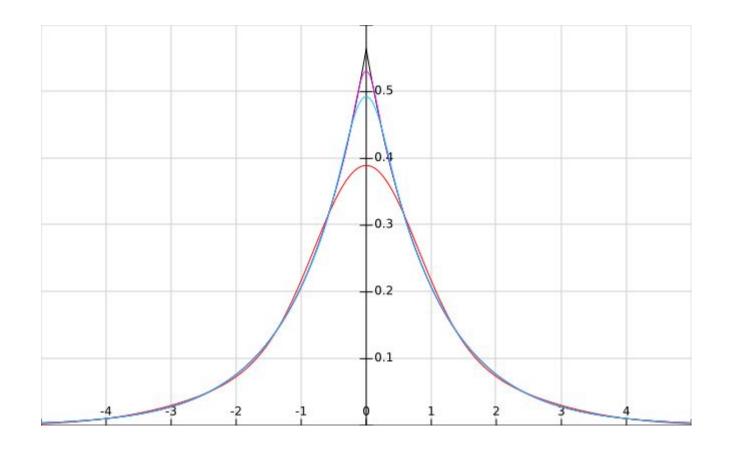
Calculation settings

0.31771

Two blank lines

0.00000 0.00000 0.85412

Basis sets

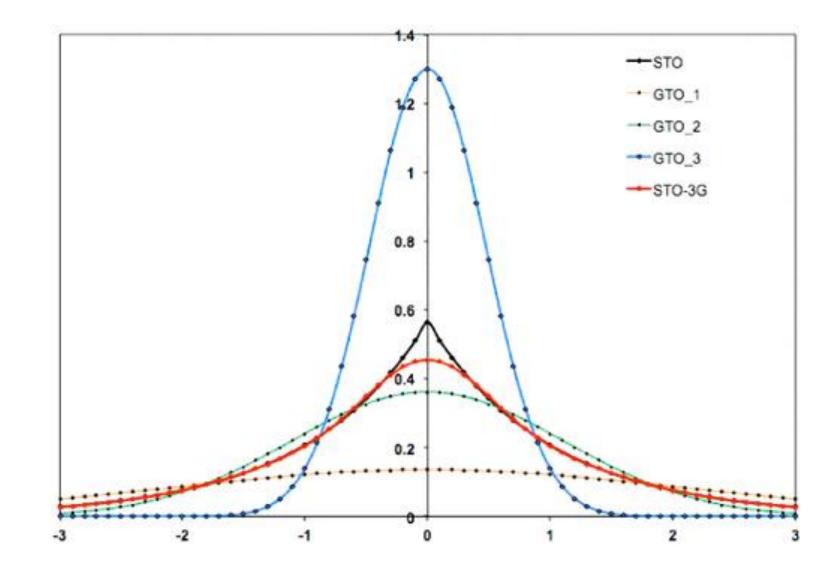

Gaussian is called so after Gaussian basis sets it uses

Main families of Gaussian basis sets:

- 1. Pople's basis sets: 3-21G, 4-31G, 6-31G, 6-311G all are split-valence, quite outdated
- 2. Dunning's: cc-pVxZ, x = D, T, Q, 5 etc very useful for post-HF because convenient for CBS
- 3. Ahlrich's: def2-SVP, def2-TZVP, def2-QZVP, more optimal for DFT
- 4. *Jensen's*: pc-n, n = 0, 1, 2, etc; pc-seg-n, n = 0, 1, 2
- 5. Atomic natural orbitals (ANO), very large and deeply contracted basis sets

Basis sets

Ideally, a Slater-type basis set decay and a sharp cusp (tip):


 $R(r)=Nr^{n-1}e^{-\zeta r}$

Using them wasn't practical be Convenient alternative: r^2

Ideally, a Slater-type basis set is needed because of its shape: slow enough

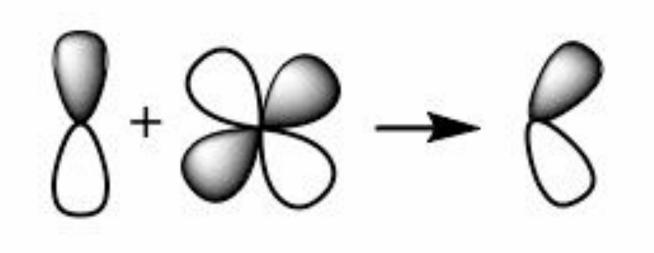
Using them wasn't practical because integrating such functions is hard

Gaussian basis functions are stacked in a linear combination to make a contracted basis function:

$$\varphi_{\rm CGTO}$$
 = $\sum c_i \varphi_{\rm GTO}$

STO-nG basis set

Minimal basis sets, where *n* primitive Gaussian orbitals are fitted to a single Slater-type orbital. It is a split-valence basis set, the number of basis functions that is assigned to core orbitals differs from the one for the valence orbitals.


Number of contracting gaussians Number of contracting gaussians in forming the second valence function the function describing a core orbital -3-21G Number of contracting gaussians forming the first valence function

Basis sets

with AM = x and basis functions with AM = x + 1Used for describing the hybridization effect Already included in *Dunning's* basis sets

Diffuse basis functions are simply basis functions with a small exponent value. They are used to describe electron density far from nuclei.

Useful for more accurate energies, dipole moments, polarizabilities. <u>Sometimes may cause the</u>

SCF to not converge. Almost mandatory for anions.

Marked as + or ++ in *Pople's* basis sets: **6-311++G****

Marked as aug- for *Dunning's* basis sets: **aug-cc-pVTZ**

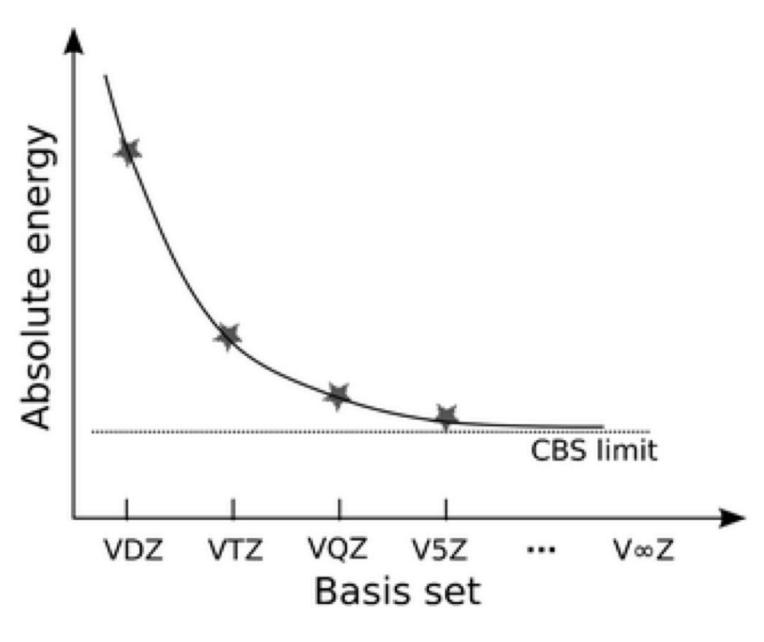
Marked as D for Ahlrich's: def2-TZVPD

- **Polarization basis functions** are linear combinations of basis functions
- Marked as * (d) or ** (d,p) in *Pople's* basis sets: **6-31G*, 6-31G****

How to choose basis sets

The rule is simple - the larger, the better

An ideal basis set is infinite (complete)



The larger the basis set - the lower E you get and this applies to forces and other values.

In practice:

CCSD, CCSD(T) and such

STO-nG, 3-21G, 4-31G are just toys

6-311+G^{**} is good enough for DFT geometry optimizations

- and frequencies, 6-31+G^{**}, def2-SVP, def2-TZVP too
- While aug-cc-pVTZ, aug-cc-pVQZ are appropriate for MP2,

What is Gaussian good for?

- 1. Semiempirical calculations for <u>molecules</u>
- 2. HF, some post-HF
- 3. DFT calculations
- 4. TDDFT calculations
- 5. Potential energy surveys (bond/angle scanning)
- 6. QM/MM

What is Gaussian not good for?

What is Gaussian not good for?

- 1. Calculations in periodic boundary conditions
- 2. Multireference calculations
- 3. Large-scale post-HF calculations

How to run single-point energy calculations

%CPU=0-15 %Mem=8GB %Chk=filename.chk #n <method>/<basis set> (Semiempirical don't need basis sets) Comment 0 1 -0.009140.82554 \bigcirc 1.79554 -0.00914Η 0.50222 0.31771 Η

> Dipole and multipole moments will also be printed Molecular orbitals are contained in <u>.chk</u> files They are converted to .fchk using <u>formchk</u> program

- 0.00000
- 0.00000
- 0.85412

How to run geometry optimizations

%CPU=0-15				
%Mem=8GB				
%Chk=filena	ame.chk			
#n <method2< td=""><td>>/<basis< td=""><td>set></td><td>Opt</td><td>Freq</td></basis<></td></method2<>	>/ <basis< td=""><td>set></td><td>Opt</td><td>Freq</td></basis<>	set>	Opt	Freq
Comment				
0 1				
0	0.82554		-0.	00914
H	1.79554		-0.	00914
H	0.50222		0.	31771

Freq command calculates harmonic frequencies after the <u>Opt</u> is over. Normal mode analysis and thermochemistry will be printed out

- 0.00000
- 0.00000
- 0.85412

Output file

SCF Done: E(UB3LYP) = -931.873862428 A.U. after 26 cycles NFock= 26 Conv=0.49D-08 -V/T= 2.0042	Info about printed usi
Alpha occ. eigenvalues14.50217 -14 Alpha occ. eigenvalues10.21385 -10	
Orbital energies	
Mulliken charges and spin densities:	ulation analys
Center Atomic Forces (Hart	 rees/Bohr)
Number Number X Y	

Info about individual SCF cycles can be printed using #p

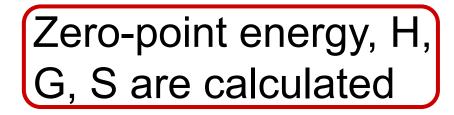
- 41000 -10.26267 -10.21463
- 20189 -10.20176 -10.19819

sis can be done, spin nen multiplicity ≠ 1

Ζ

Forces or energy gradients

Output file


ItemMaximumForceRMSForceMaximumDisplacementRMSDisplacement	Value 0.002860 0.000336 0.054766 0.008174	Threshold 0.000015 0.000010 0.000060 0.000040	Converged NO NO NO NO	? Useful geor
	1		2	
	A		А	
Frequencies	45.7127		112.1230	
Red. masses	8.3448		9.8275	
Frc consts	0.0103		0.0728	
IR Inten	0.5534		1.2086	
Zero-point correct:	ion=			0.228965 (Ha
Thermal correction	n to Energy=			0.244086
Thermal correction	n to Enthalp	y=		0.245030
Thermal correction	n to Gibbs F	ree Energy	=	0.186565
Sum of electronic	and zero-po	int Energi	es=	-931.64
Sum of electronic	and thermal	Energies=		-931.62
Sum of electronic	and thermal	Enthalpie	s=	-931.62
Sum of electronic	and thermal	Free Ener	gies=	-931.68
27				

I to look at when doing metry optimizations

> 3 A 120.7811 7.4890 0.0644 1.0928

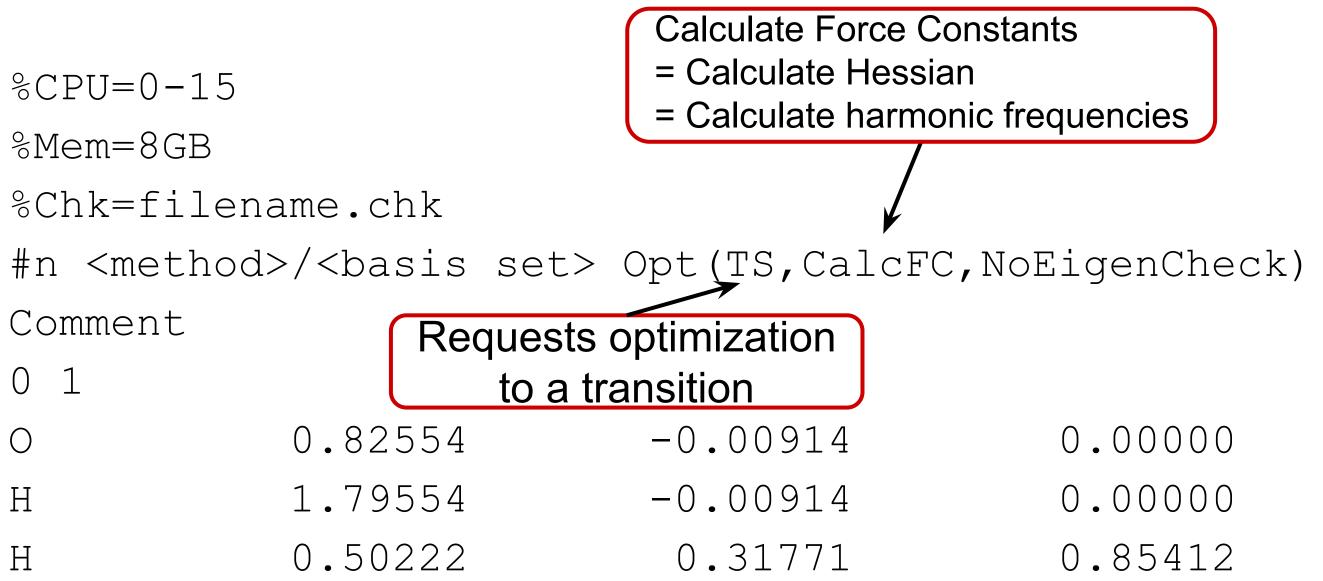
This is how vibrational frequencies are printed out

artree/Particle)

Output file

Excitation energies and oscillator strengths:

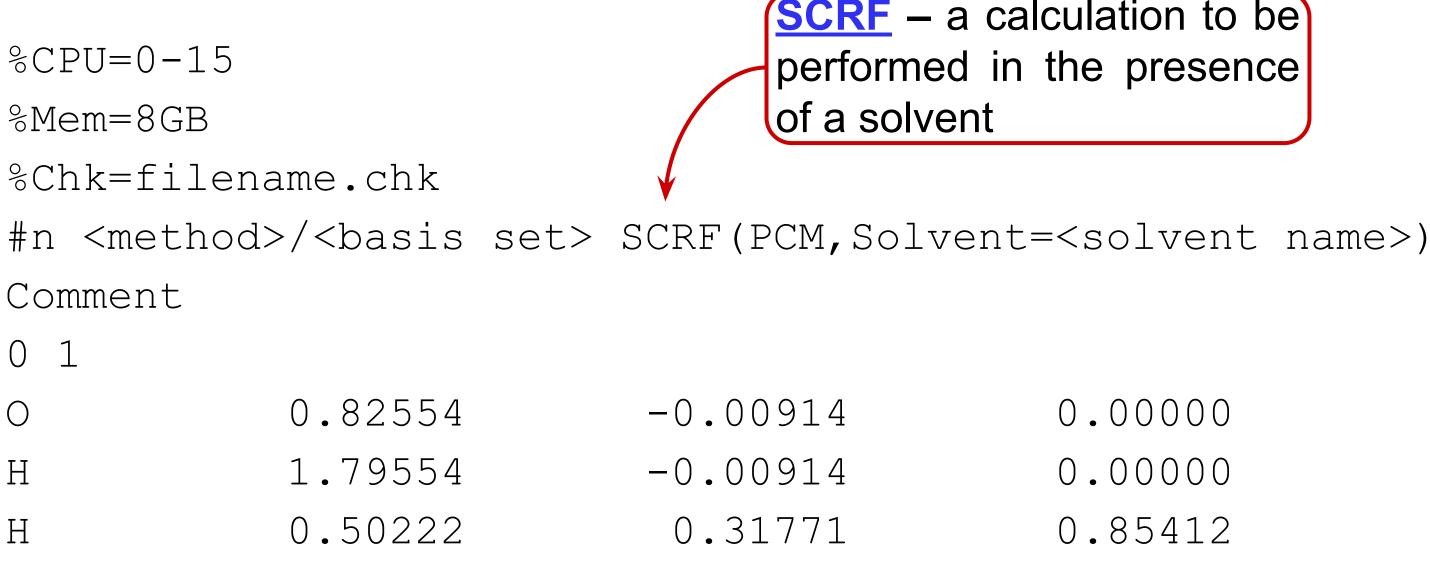
Excited State	1:	3.168-A	1.4209 eV	872.57 nm
76A -> 77A		0.93970		
76A -> 78A		-0.10662		
76A -> 81A		0.12822		
72B -> 75B		0.19949		


This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-DFT) = -931.245631434Copying the excited state density for this state as the 1-particle RhoCI density.

> **TDDFT**. Electronic state energy is provided in eV, nm f - oscillator strength (absorption intensity)

f=0.0117 <S**2>=2.259

How to find a transition state for a reaction


For TS you need to guess the starting geometry accurately and calculate harmonic frequencies beforehand and afterwards TS searches are to be followed with IRC

Freq

- 0.00000
- 0.00000
- 0.85412

How to account for solvation

Google "gaussian solvents" to find the list of solvents CPCM and SMD can be used in place of PCM

SCRF – a calculation to be performed in the presence

0.00000

- 0.00000
- 0.85412

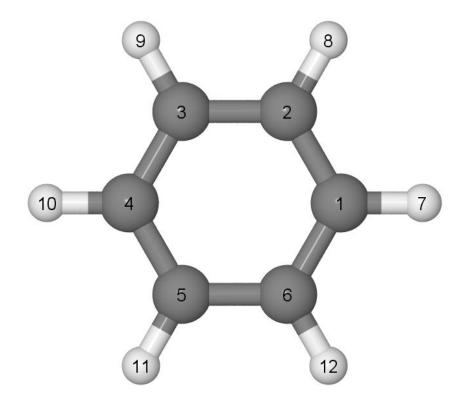
How to do TDDFT calculations

%CPU=0-15

%Mem=8GB

%Chk=filename.chk

#n <XC functional>/<basis set> TD(Root=,NState=) Comment


0 1		
0	0.82554	-0.00914
Η	1.79554	-0.00914
Η	0.50222	0.31771

Root - state of interest, NState = how many ES to solve for Opt and Freq can be added as well so ES geometries can be located

<u>Without XC functional supplied CIS calculation will be done</u>

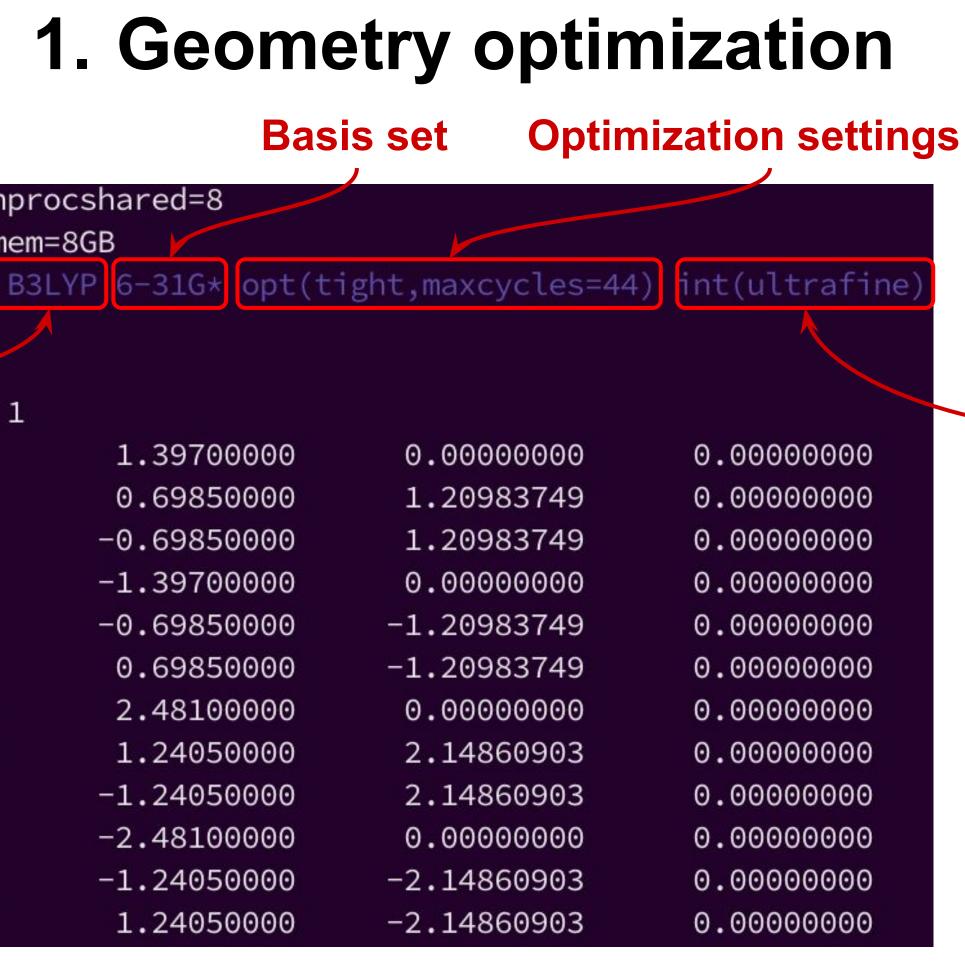
- 0.00000
- 0.00000
- 0.85412

Lab 3. Benzene

1. Geometry optimization

%nprocshared=8

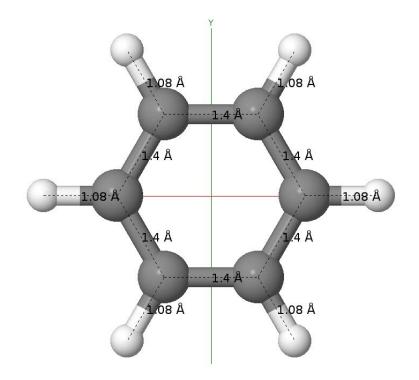
%mem=8GB


0

Basis set

Type of functional

1			
	1.39700000	0.00000000	0
	0.69850000	1.20983749	0
	-0.69850000	1.20983749	0
	-1.39700000	0.00000000	0
	-0.69850000	-1.20983749	0
	0.69850000	-1.20983749	0
	2.48100000	0.00000000	0
	1.24050000	2.14860903	0
	-1.24050000	2.14860903	0
	-2.48100000	0.00000000	0
	-1.24050000	-2.14860903	0
	1.24050000	-2.14860903	0


molec_B3LYPp2p_em.gau .gau extension

two-electron integrals

1. Geometry optimization

- Information on the input data (functional, basis set, structure, etc.).
- Relaxed structure, its symmetry, bond lengths.
- Occupation of orbitals.
- Technical parameters.

Stoichior						
	kgroup D6H[
	freedom 2			- 24		
Full poir			D6H NO			
	Abelian subgr			o 8		
Largest o	concise Abeli	- ·	an an an an an an			
		Standard	orientatio	า: 		
Center	Atomic	Atomic	C	oordinate	s (Angs	troms)
Number	Number	Туре	Х		Y	Z
1	6	 0		 00 1.3	 97000	 0.000000
2	6	0	1.2098		98500	-0.000000
3	6	0	1.2098		98500	-0.000000
4	6	0	-0.0000		97000	
5	6	0	-1.2098		98500	-0.000000
6	6	Θ	-1.2098		98500	-0.000000
7	1	Θ	0.0000		81000	0.000000
8	1	Θ	2.1486	99 1.2	40500	-0.000000
9	1	Θ	2.1486		40500	-0.000000
10	1	0	-0.0000		81000	0.000000
11	1	Θ	-2.1486		40500	-0.000000
12	1	Θ	-2.1486		40500	-0.000000
Rotationa	 al constants	 (GHZ):	5.6868	 3180	5	 .6868180

	rk group D6H]				
Deg. of		2					
Full poi	int group		D6H	NOp	24		
Largest	Abelian subg	roup	D2H	NOp	8		
Largest	concise Abel	ian subgroup	D2	NOp	4		
		Standard	orient	ation:			
Center	Atomic	Atomic		 Coo	rdi	nates (Ang	gstroms)
Number	Number	Туре		Х		Y	Z
1	6	 0		000000		1.397000	0.000000
2	6	Θ	1.	209837		0.698500	-0.00000
3	6	Θ	1.	209837	-	-0.698500	-0.000000
4	6	Θ	-0.	000000	-	-1.397000	0.000000
5	6	Θ	-1.	209837		-0.698500	-0.000000
6	6	Θ	-1.	209837		0.698500	-0.000000
7	1	Θ	Θ.	000000	1	2.481000	0.000000
8	1	Θ	2.	148609		1.240500	-0.000000
9	1	Θ	2.	148609		-1.240500	-0.000000
10	1	Θ	-0.	000000		-2.481000	0.000000
11	1	Θ	-2.	148609	-	-1.240500	-0.000000
12	1	Θ	-2.	148609		1.240500	-0.000000
Rotatior	nal constants	(GHZ):	5	.68681	.80		 5.6868180

molec_B3LYPp2p_em.out .out extension

Skoltech

2.8434090

2. Frequency calculations

%nprocshared=8

%mem=8GB

0

Η

Η

Η

Н

Н

%chk=benzene_molec_B3LYPp2p_freq.chk

B3LYP 6-31G* int(ultrafine) Freq(Raman,SaveNM)

1	
1.39661728	0.0000000
0.69830864	1.20950605
-0.69830864	1.20950605
-1.39661728	0.0000000
-0.69830864	-1.20950605
0.69830864	-1.20950605
2.48363019	0.0000000
1.24181509	2.15088684
-1.24181509	2.15088684
-2.48363019	0.0000000
-1.24181509	-2.15088684
1.24181509	-2.15088684

Checkpoint file

> molec_B3LYPp2p_freq.gau .gau extension

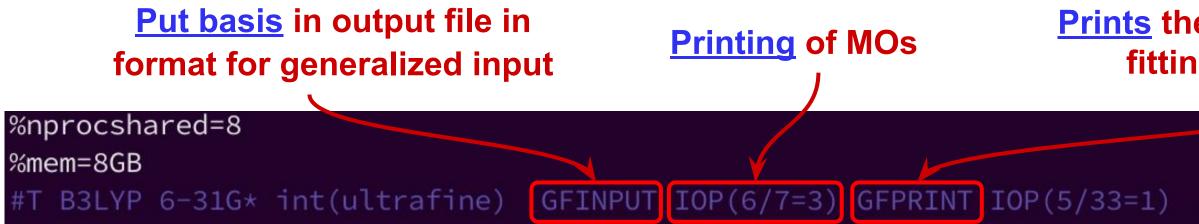
0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

Compute force constants and the resulting vibrational frequencies

2. Frequency calculations

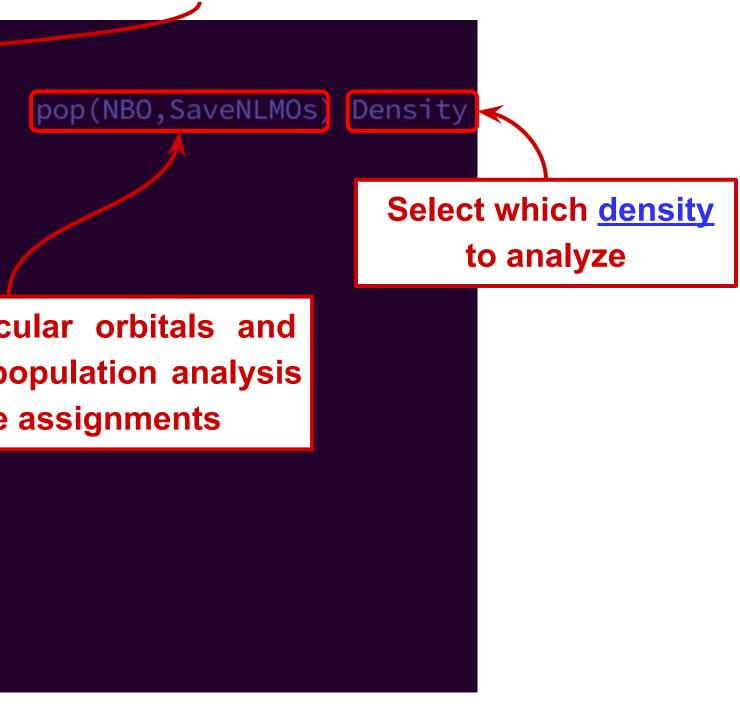
Convert output file to format, which is readable

formchk benzene_molec_B3LYPp2p_freq.chk


Freq	RB3LYP						6-31G(d)
Number of	atoms			I		12	
Info1-9				I	N=	9	
	22	20	Θ		0	Θ	100
	6	18	-502				
Route				С	N=	4	
# B3LYP 6	-31G* in	t(ultrafine) I	Freq(Rama	n,SaveN	IM)		
Charge				I		0	
Multiplic	ity			I		1	
Number of	electro	ns		I		42	
Number of	alpha e	lectrons		I		21	
Number of	beta el	ectrons		I		21	
Number of	basis f	unctions		I		102	
Number of	indepen	dent functions	5	I		102	
Number of	point c	harges in /Mo ⁻	l/	I		Θ	
Number of	transla	tion vectors		I		Θ	
Atomic nu	mbers			I	N=	12	
	6	6	6		6	6	6
	1	1	1		1	1	1
Nuclear c	harges			R	N=	12	
6.00000	000E+00	6.0000000E+0	00 6.000	00000E+	00	6.0000000E+00	6.0000000E+00
6.00000	000E+00	1.0000000E+0	00 1.000	00000E+	00	1.00000000E+00	1.00000000E+00
1.00000	000E+00	1.0000000E+0	90				

benzene_molec_B3LYPp2p_freq.fchk

Skoltech


.fchk extension

3. Calculation of Localized Molecular Orbitals

				01
	0.0000000	0.0000000	1.39661728	С
	0.0000000	1.20950605	0.69830864	С
Printing of molect	0.0000000	1.20950605	-0.69830864	С
several types of po	0.0000000	0.0000000	-1.39661728	С
and atomic charge	0.0000000	-1.20950605	-0.69830864	С
J	0.0000000	-1.20950605	0.69830864	С
	0.0000000	0.0000000	2.48363019	Н
	0.0000000	2.15088684	1.24181509	Н
	0.0000000	2.15088684	-1.24181509	Н
	0.0000000	0.0000000	-2.48363019	Н
	0.0000000	-2.15088684	-1.24181509	Н
	0.0000000	-2.15088684	1.24181509	Н

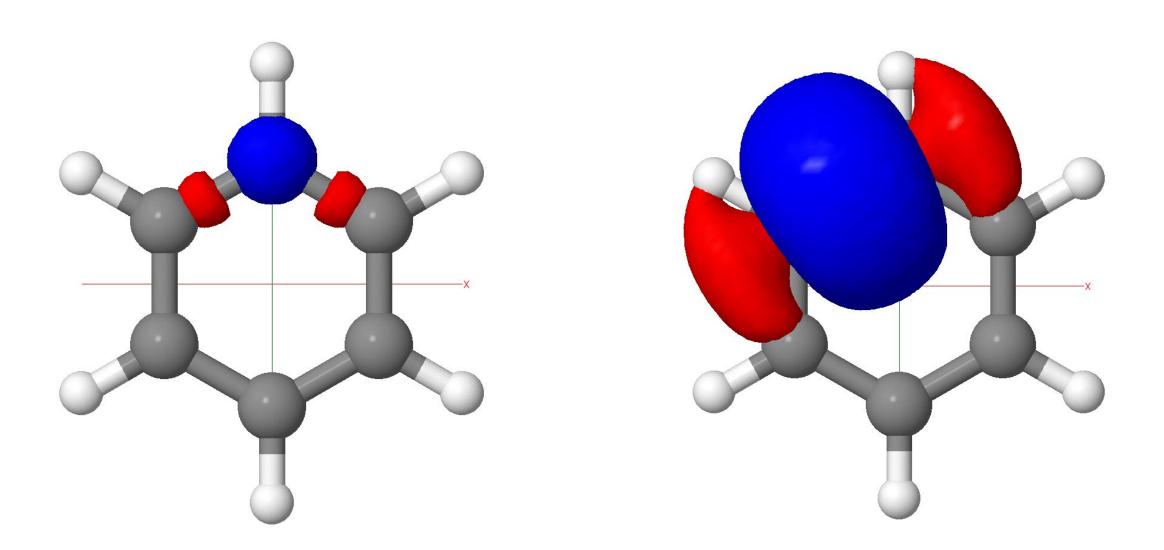
Prints the current basis set and density fitting basis set in tabular form

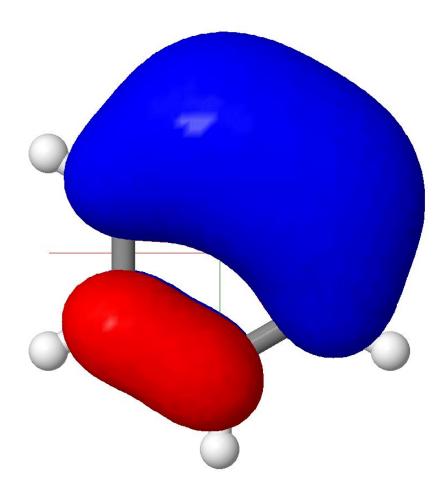
3. Visualization of LMOs

Convert output file to format, which can be visualized

The generated files with MOs will be in **orbs.zip** archive.

benzene_molec_B3LYPp2p_lmo.chk


Number of molecular orbitals to generate. **Starts from low-energy MOs**


.chk extension

3. Visualization of LMO

LMOs can be visualized with Jmol software (orbs.zip archive). However, the LMOs energies and occupation can be found only in .out file.

Compare results with the semi-empirical methods

Compare the results of Gaussian with results of MOPAC, which uses semi-empirical methods. What are the difference in HOMO-LUMO gap, MOs, LMOs, etc?

Extra materials

Google gaussian + scf/opt/freq/nmr/td/scrf

This will give you documentation for all Gaussian commands and references to literature.

- Full list of Gaussian keywords.
- <u>Chemcraft</u> program can be used for visualization and has a long trial period.
- **Population analysis**.
- Official tutorials from Gaussian team.
- IR SPect: A Python tool to extract frequencies and IR/Raman.
- basissetexchange.org to look at different basis sets.

