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Figure 1: The diamond crystal structure of Si.
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sj: E: -5.415 eV, V: 20.490 Å3, B: 87.434 GPa

Figure 2: Equation of state for Si. Energy and volume
are per one Si atom.

The system under the study is crystalline Si with diamond structure, see Fig. 1.
Methods. The DFT calculations were performed in VASP package [1] using the PBE density functional and

PAW pseudopotentials [2] with 4 valence electrons. Plane wave basis set cutoff was set to 600 eV (to minimize
Pulay error [9]) for volume optimization using conjugate gradient algorithm (IBRION=2;ISIF=3), while for the
rest of calculations it was reduced to 250 eV, and the volume was fixed. For geometry optimization a 11×11×11
Γ-centered k-mesh was used, while for vibrational frequencies and elastic tensor calculations the k-mesh was
increased to 21 × 21 × 21. The Gaussian smearing method with SIGMA=0.1 was employed. In case of density
of state (DOS) calculations a finer 21 × 21 × 21 k-mesh and the tetrahedron method with Blöchl corrections
for managing partial occupancies were used. Vibrational frequencies were calculated at Γ-point using increased
Fourier (FFT) grid (PREC=Accurate) with finite differences method (0.015 Ådisplacements of atoms) and using
symmetry analysis (IBRION=6) [11]. The results were prepared with the help of ASE [3], Pymatgen [4] and
SIMAN [5] python packages. The python scripts are provided in [Lab3 silicon.ipynb]. The charge density plot
was obtained with VESTA software [14]. Effective masses are calculated with Sumo package [16].

Results. The initial primitive cell geometry was constructed using ase.build module and experimental
cubic lattice constant of 5.4289 Å extrapolated to 0 K [8] (5.41991 Å at room temperature, 20◦C [7]). The
primitive cell is rhombohedral α = 60◦ and contains two atoms, at [0, 0, 0] and [1/4, 1/4, 1/4]. The optimized
lattice constant is 5.47 Å, which is 1% larger than the experimental value. This is a typical systematic error of
PBE functional [10]. The single point calculation shows that Pulay error is only –219 MPa at 250 eV e-cutoff.

The equation of state (EOS) was derived by optimizing shape and positions of several cells with different
volumes (Fig. 2) [eos.sh]. Due to high symmetry of the lattice only single point calculations are needed.
The lattice constant derived from the EOS is 5.47 Å, which is equivalent to lattice constant obtained by full
optimization at much larger e-cut.

Three vibrational frequencies at Γ-point are around 15.4 THz (64 meV) ensuring that the structure is
dynamically stable. To estimate the mechanical properties of the crystal elastic moduli tensor was calculated
yielding 3 nonzero elements: C11 = 153.5, C12 = 56.2, C44 = 75.2 GPa. The results are in a reasonable
agreement with the experimental data: 167.4, 65.3, and 79.6 GPa [6], except for C12 which is underestimated
by 7%. The eigenvalues of stress tensor are positive confirming mechanical stability of the lattice.

The charge density is provided in Figs. 3 and 4 [sp chg.sh]. It is clearly seen that the valence electrons are
localized between the Si nuclei, indicating covalent bonds. The negative charge density around the core is an
artifact of on-site correction terms related to numerical implementation of PAW theory in VASP (by default
CHGCAR does not contain charge density of the core electrons, but small “pseudized” core charge can be included
on the PW grid, to avoid numerical instabilities [13]). The Bader charges are calculated using Bader program



Figure 3: Charge density of Si for 2x1x1 supercell. The
isosurface level is 0.07 el/Å3.

Figure 4: Charge density cross section for (110)
plane. The minimum and maximum values are
–0.03 and +0.08 el/Å3.

developed by Henkelman group [15] [bader.sh]. The charge on Si atom is 4 electrons in accordance with the
number of valence electrons used in the PAW potential [ACF.dat].
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Figure 5: Band structure of Si. Valence band maxi-
mum and conduction band minimum are shown with
markers.
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Figure 6: PDOS of Si. The Fermi level is at 0 eV.

The band structure is presented in Fig. 5. The band gap is 0.6 eV which is in agreement with DFT
calculations available in literature, but strongly underestimated compared to experimental values of 1.17 eV
at 0 K (1.13 eV at 293 K) [12]. The band gap is indirect. The density of states is shown in Fig. 6 [dos.sh].
The four bands, clearly seen in Fig. 5, can be identified on the DOS plot by strong peaks. Two lower energy
band has predominantly s character, whereas the top of the valence band is of p character. The valence band
maximum is located at Γ-point, whereas the conduction band minimum is on ∆-path at 0.84 between Γ and
X points (there are 6 symmetry equivalent minima). There are two effective masses for holes: 0.16 and 0.27
corresponding to the three bands: 1 light and 2 heavy holes 1. There are also two effective masses for electrons:
0.95 along ∆-path and 0.20 in perpendicular directions [mass.sh].

The dielectric function was calculated using independent-particle approximation (LOPTICS=TRUE) [diel.sh]

and shown in Fig. 7. The UV-Vis absorption spectrum is shown in Fig. 8 and was obtained from imaginary
part of dielectric functions using sumo-optplot tool.

1Strictly speaking, because the band maximum is degenerate, the effective mass depends on crystallographic direction, see e.g.
[17, p.202]. In the current report the masses are given for ∆-direction. In fact, the situation is even more complex due to spin-orbit
coupling (SOC) which is negligible on the scale of Fig. 5 but is critical on kT -scale: one of the three bands degenerate at Γ-point
is split-off down by 44 meV, and the degeneracy of the two upper bands along ∆- and Λ-directions is also broken by SOC but with
smaller split of the order of 25 meV [18].
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Figure 7: Dielectric function of Si.
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Figure 8: UV-Vis absorption spectrum.

Table 1: Energy differences caused caused by the displacement from the band extremum and the corresponding
effective electron masses. Technically negative electron effective mass at the VB maximum is considered as
positive effective mass of a hole.

∆k direction band ∆E, meV m∗
e/me

a,b,c (VB max, light) 2 –0.47 –0.16

a,b,c (VB max, heavy) 3 –0.28 –0.27

a,b,c (VB max, heavy) 4 –0.28 –0.27

a (CB min) 5 0.14 0.95

b (CB min) 5 0.37 0.20

c (CB min) 5 0.37 0.20

Supporting Information

Attached are input, output and figure files, the notations are as follows. Types of calculations: “em” = energy
minimization, “sp” = single point, “freq” = vibrational frequencies, “sc” = supercell, “diel” = dielectric .
Attached also the python notebook [Lab3 silicon.ipynb] which uses ASE package to plot figures in this report.

Tutorial information (not required in student reports)

The electron effective mass for a local band extremum can be calculated according to:

E(k) = E0 +
~2

2m∗ (k − k0)
2

In order to find the second-order coefficient ~2
2m∗ a three-point numerical differentiation scheme should be

applied. The calculations were repeated for a set of explicitly given k-points with a small displacement (∆k
= ±0.01 in reciprocal representation (0.0122 Å−1)) from VB maximum (k-point (0,0,0)) and CB minimum (k-
point (0.0, 0.42, 0.42)) along each of the cartesian directions. The resulted energy differences and corresponding
effective electron masses are provided in Table 1. Note that the bands curvature around the VB maximum is
symmetrical, though it is not true for the CB minimum.
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