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Top-down design:

synthesis recipe

additional constraints 
(high stability, low toxicity,...)

not clear how to achieve this!

target property

Bottom-up design:

material 1 material 2 ...  material N

p
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high-throughput screening

target property (high activity 
and selectivity of a catalyst)

High-throughput computational materials design



Descriptors

molecule transfer 
and rotation

structure descriptor: Cartesian coordinates → changes, but properties do not change!

descriptive parameters
(composition, synthesis 
conditions, operation 
conditions)

artificial intelligence 
(neural networks, 
regression, data 
mining,...)

machine will learn symmetries, not (other) physics



Descriptors

J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry 1, 37 (2009)

Simple(r) properties (bulk d-band center position and CO dissociation energy) are correlated 

to more complex properties (adsorption energy and reaction barrier)



Descriptors

J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry 1, 37 (2009)

A simple physical model (Newns-Anderson) motivates the d-band center descriptor

What if we don’t know such a model, or we need a more accurate and more widely applicable 

model?



Descriptors

J. K. Nørskov, T. Bligaard, J. Rossmeisl and C. H. Christensen, Nature Chemistry 1, 37 (2009)

A simple physical model (Newns-Anderson) motivates the d-band center descriptor

Find descriptor from DATA!



Supervised data analysis

Training set
Calculate and/or measure 
properties and functions
𝑃𝑖, for many materials 𝑖

Descriptor
Find appropriate descriptor 𝒅𝑖

Learning
Find the function 𝑃(𝒅)

Fast prediction
Calculate 𝑃 for new values of 

𝒅 (new materials)

active learning

prediction



Descriptors

1) A descriptor 𝒅𝒊 uniquely characterizes the material 𝒊 as well as property-relevant 

elementary processes

2) The determination of the descriptor must not involve calculations or measurements as 

intensive as those needed for the evaluation of the property to be predicted



kernel ridge regression                                                        linear

+ +
minimize

Target property model: Kernel ridge regression versus 
feature selection 

Regression models: Basis set expansion in materials space

𝒄 0



Target property model: Kernel ridge regression versus 
feature selection 

kernel (Gaussian, Laplacian, linear (𝒅𝒊 ∙ 𝒅𝒋))

kernel ridge regression                                                        linear

+ +
minimize

𝒄 0

penalty on similar data points

penalty on the number of 

non-zero coefficients 𝒄 0



Regression: Importance of regularization

training validation

min
𝑐

σ𝑖 𝑃 𝑑𝑖 , 𝑐 − 𝑃𝑖
2 + 𝜆𝑓(𝑐), min

𝜆
(validation error) → 𝜆



(Gaussian) kernel ridge regression example



Descriptors

1) A descriptor 𝒅𝒊 uniquely characterizes the material 𝒊 as well as property-relevant 

elementary processes

2) The determination of the descriptor must not involve calculations as intensive as those 

needed for the evaluation of the property to be predicted

3) The dimension 𝛀 of the descriptor should be as low as possible (for a certain accuracy 

request)

L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015)

Choose a physically motivated basis set!



Descriptors

Idea: calculate many physically motivated quantities (features), and use these features as a 

basis for the physical model under compactness constraints

1) A descriptor 𝒅𝒊 uniquely characterizes the material 𝒊 as well as property-relevant 

elementary processes

2) The determination of the descriptor must not involve calculations as intensive as those 

needed for the evaluation of the property to be predicted

3) The dimension 𝛀 of the descriptor should be as low as possible (for a certain accuracy 

request)

L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, Phys. Rev. Lett. 114, 105503 (2015)



ZB

RS

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”

82 binary octet compounds



Energy differences 
between different 
structures are very 
small. 

For Si: 0.01% of the 
energy of a Si atom, 
or 0.1% of the 4 
valence electrons.

RS                                    ZB

Crystal-structure prediction was and is one of the 
most important, basic challenges of materials 
science and engineering.

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



J. A. van Vechten, Phys.
Rev. 182, 891 (1969). J. C. Phillips, Rev. Mod. 
Phys. 42, 317 (1970). 
J. John and A.N. Bloch, Phys. Rev. Let. 33, 
1095 (1974) J. R. Chelikowsky and J. C. 
Phillips, Phys. Rev. B 33, 2453 (1978)
A. Zunger, Phys. Rev. B 22, 5839 (1980).
D. G. Petifor, Solid State Commun. 51, 31
(1984). Y. Saad, D. Gao, T. Ngo, S. Bobbit, J. 
R. Chelikowsky, and W.
Andreoni, Phys. Rev. B 85, 104104 (2012).

RS                                    ZB

Crystal-structure prediction was and is one of the 
most important, basic challenges of materials 
science and engineering.

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



RS                   ZB

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” No complexity reduction → need a better basis

Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”



Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”

J. A. van Vechten, Phys.
Rev. 182, 891 (1969). J. C. Phillips, Rev. Mod. 
Phys. 42, 317 (1970). 
J. John and A.N. Bloch, Phys. Rev. Let. 33, 
1095 (1974) J. R. Chelikowsky and J. C. 
Phillips, Phys. Rev. B 33, 2453 (1978)
A. Zunger, Phys. Rev. B 22, 5839 (1980).
D. G. Petifor, Solid State Commun. 51, 31
(1984). Y. Saad, D. Gao, T. Ngo, S. Bobbit, J. 
R. Chelikowsky, and W.
Andreoni, Phys. Rev. B 85, 104104 (2012).

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

descriptor can be determined 

spectroscopically - properties of the solid



Proof of Concept: Descriptor for the Classification 
“Zincblende/Wurtzite (ZB/W) or Rocksalt (RS)?”

Can we predict not yet calculated structures from ZA and ZB? Can we create a 
map: “The ZB/W community lives here and the RS community there?” 

descriptor can be determined 

spectroscopically - properties of the solid

Can we create a map based on 

calculations simpler than bulk?



Primary features and feature space

free atoms

free dimers

How to find the best model for our target property (energy difference between different 

crystal structures)? 



Symbolic regression: Eureqa

https://community.datarobot.com/t5/resources/introduction-to-eureqa/ta-p/2409

Uses evolutionary algorithm to find the best formula describing target property

Assumes “gene” structure of the formula → bias 

May result in an unnecessarily complex model



Primary features and feature space

free atoms

free dimers

We start with 23 primary features and build > 10,000 non-linear combinations



Mathematical formulation of the problem

𝑷𝒋 -- property value (𝑬𝒁𝑩 − 𝑬𝑹𝑺) for material 𝒋 (a function in materials space)

𝒅𝒋,𝒍 -- value of feature 𝒍 related to material 𝒋 (e.g., 𝒓𝒔 𝑨𝒋 − 𝒓𝒑(𝑩𝒋) ) (a basis function in 

materials space)

𝒄𝒍 -- coefficient of the expansion of the property function in terms of basis functions:

𝑃𝑗 =෍

𝑙

𝑑𝑗,𝑙𝑐𝑙

regularization term to explore and ensure compactness of the expansion (reduce complexity)

How to find 𝒄𝒍?

෍

𝑗

𝑃𝑗 −෍

𝑙

𝑑𝑗,𝑙𝑐𝑙

2

+ 𝜆 𝒄 𝑛 → argmin(𝒄)
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𝒄 𝟎 -- number of non-zero coefficients → NP hard! (need to try all combinations)
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Mathematical formulation of the problem

𝑷𝒋 -- property value (𝑬𝒁𝑩 − 𝑬𝑹𝑺) for material 𝒋 (a function in materials space)

𝒅𝒋,𝒍 -- value of feature 𝒍 related to material 𝒋 (e.g., 𝒓𝒔 𝑨𝒋 − 𝒓𝒑(𝑩𝒋) ) (a basis function in 

materials space)

𝒄𝒍 -- coefficient of the expansion of the property function in terms of basis functions:

𝑃𝑗 =෍

𝑙

𝑑𝑗,𝑙𝑐𝑙 How to find 𝒄𝒍?

𝒄 𝟐 = σ𝒍 𝒄𝒍
𝟐 -- ridge regression → not most compact! 

𝒄 𝟎 -- number of non-zero coefficients → NP hard! (need to try all combinations)

𝒄 𝟏 = σ𝒍 𝒄𝒍 -- LASSO (Least Absolute Shrinkage and Selection Operator) → convex problem, 

equivalent to the NP-hard if features (columns of 𝒅) are uncorrelated

෍

𝑗

𝑃𝑗 −෍

𝑙

𝑑𝑗,𝑙𝑐𝑙

2

+ 𝜆 𝒄 𝑛 → argmin(𝒄)



Compressed (compressive?) sensing

Expand in a basis (wavelets) → use LASSO to select most important basis functions → store 

compressed image 



Mathematical formulation of the problem

𝑷𝒋 -- property value (𝑬𝒁𝑩 − 𝑬𝑹𝑺) for material 𝒋 (a function in materials space)

𝒅𝒋,𝒍 -- value of feature 𝒍 related to material 𝒋 (e.g., 𝒓𝒔 𝑨𝒋 − 𝒓𝒑(𝑩𝒋) ) (a basis function in 

materials space)

𝒄𝒍 -- coefficient of the expansion of the property function in terms of basis functions:

𝑃𝑗 =෍

𝑙

𝑑𝑗,𝑙𝑐𝑙 How to find 𝒄𝒍?

𝒄 𝟏 = σ𝒍 𝒄𝒍 -- LASSO (Least Absolute Shrinkage and 

Selection Operator) → convex problem, equivalent to the 

NP-hard if features (columns of D) are uncorrelated (no 

linear dependence in the basis set)

෍

𝑗

𝑃𝑗 −෍

𝑙

𝑑𝑗,𝑙𝑐𝑙

2

+ 𝜆 𝒄 𝑛 → argmin(𝒄)



The descriptors selected with LASSO

Same features are selected for higher-dimensional descriptors, but this does not 

have to be the case  



“The Map” -- compressed sensing -- LASSO, 2D descriptor 

The complexity and science is 
in the descriptor (identified 
from >10,000 features).

L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, 
C. Draxl, and M. Scheffler, 
Phys. Rev. Lett. 114, 105503 (2015).

RS

ZB

𝑃 𝑗 = 𝒅 𝑗 𝒄



Predictive power of the model
Hadn't we known about diamond … we'd have predicted it!

Hadn't we known about any carbon-containing binary … we'd have predicted carbon 

chemistry (from atomic features)



Predictive power of the model

Descriptor   ZA, ZB ZA*, ZB*   1D       2D      3D     5D

MAE                1*10-4           3*10-3 0.12  0.08  0.07 0.05

MaxAE 8*10-4 0.03      0.32   0.32   0.24   0.20

MAE, CV           0.13       0.14     0.12    0.09   0.07   0.05

MaxAE, CV       0.43      0.42     0.27    0.18    0.16   0.12

Mean absolute error (MAE), and maximum absolute error (MaxAE), in eV, (first two lines) 
and for a leave-10%-out cross validation (CV), averaged over 150 random selections of the 
training set (last two lines). For (ZA*, ZB*), each atom is identified by a string of three 
random numbers.

Gaussian-kernel ridge regression LASSO
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random numbers.

Predictive power of the model

Gaussian-kernel ridge regression LASSO



Predictive power of the model

Gaussian-kernel ridge regression LASSO



CH4 chemical decomposition 
under shock-compression conditions (high T and p)

Methane at T = 3,300 K, 
p = 40.53 GPa: MD simula-
tions (using a force-field 
description) find 2,613 
different chemical reactions. 
Using compressed sensing it 
is shown that only 11% of 
them are relevant.

Yang, Q., Sing-Long, C. A., Reed, E. J., MRS Advances 1 (2016)

The A matrix has 2,613 columns, 
2,395,918,510 rows
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Lattice Anharmonicity and Thermal Conductivity from 
Compressive Sensing of First-Principles Calculations

𝑭𝑎 = −Φ𝑎 −Φ𝑎𝑏𝒖𝑏 −
1

2
Φ𝑎𝑏𝑐𝒖𝑏𝒖𝑐 −⋯

force on atom 𝒂
(training data)

displacement of atom 𝒄
(training data)

force constant tensor
𝝏𝟐𝑬/𝝏𝒖𝒂𝝏𝒖𝒃

(unknown)

min
Φ

𝜆෍

𝐼

Φ𝐼 +෍

𝑎

𝐹𝑎 − 𝐴𝑎𝐽Φ𝐽
2

→ Φ
𝐴𝑎𝐽 =

−1 𝑢𝑏
1 −

1

2
𝑢𝑏
1𝑢𝑐

1 ⋯

⋮ ⋮ ⋮

−1 𝑢𝑏
𝐿 −

1

2
𝑢𝑏
𝐿𝑢𝑐

𝐿 ⋯

→ predictive model for anharmonic lattice dynamics

F. Zhou, W. Nielson, Y. Xia, and Vidvuds Ozoliņš, Phys. Rev. Lett. 113, 185501 (2014)



Compressive Sensing for Cluster Expansion

𝐸 𝜎 = 𝐸0 +෍

𝑓

Π𝑓 𝜎 𝐽𝑓 min
𝐽𝑓

𝜆෍

𝑓

𝐽𝑓 +෍

𝑖

𝐸𝐷𝐹𝑇(𝜎𝑖) − 𝐸𝐶𝐸(𝜎𝑖)
2 → 𝐽𝑓

L. J. Nelson, G. L. W. Hart, F. Zhou, and V. Ozoliņš, Phys. Rev. B 87, 035125 (2013)



Enabling Feature Spaces with Billions of Elements by Sure 
Independence Screening

𝒄 𝟏 = σ𝒍 𝒄𝒍 -- LASSO → convex problem, equivalent to the NP-hard if features 

are uncorrelated → not the case when many features are generated → Sure 

Independence Screening plus Selection Operator (SISSO)

1. Systematically construct a huge feature space (1011) from primary features: ෠𝑅 =

{+, −, ∙, −1, 2, 3, , exp, log, |−|}(use physically meaningful combinations!)

2. Select top ranked features using Sure Independence  Screening (SIS)[1] (correlation 
learning). Select n features  corresponding to the n largest projection on the target 
property, i.e. largest components of the vector ( 𝑫𝑇𝒚 )

3. Apply a sparsifying operator (l0 regularization) to the selected features to 
determine 1D, 2D,... descriptors

R. Ouyang, et al., Physical Review Materials 2, 083802 (2018)

y : vector with the target property (e.g., rock salt-
zincblende energy differences; 82 elements)

𝑫 : matrix of the feature space (e.g., 82 x 100 billion elements)



SISSO: Iterative residual fitting

𝒚: response vector

P: target material property

Residual: 𝑅 = 𝑃 − σ𝑖 𝑐𝑖𝑑𝑖

R. Ouyang, et al., Physical Review Materials 2, 083802 (2018)

features
d1

P

Residual1

features
d2



SISSO: Performance

LASSO(+𝒍𝟎) SISSO



SISSO: Performance

SISSO Φ2

SISSO Φ3

LASSO



SISSO: Multitask and categorical

Multitask: Construct simultaneously SISSO models for several properties with the same 
descriptor

min
𝒄

𝜆 𝑐𝑖
𝑘

0
+෍

𝑘

1

𝑁samples
𝑘 ෍

samples
in 𝑘

𝑃𝑘 − 𝒅𝒄𝑘
2

→ 𝒄

Categorical (can be also multitask): Property - material belongs to a given class (yes/no) 

min
𝒄

𝜆 𝑐𝑖
𝑘

0
+ ෍

𝐼=1

𝑁classes

෍

𝐽≠𝐼

𝑂𝐼𝐽(𝒅, 𝒄) → 𝒄

number of data in the overlap region between domains of different classes in 𝒅-space

R. Ouyang, et al., J. Phys.: Mater. 2, 024002 (2019)



SISSO: Examples

• Perovskite phase stability (improved tolerance factor)

Goldschmidt factor: accuracy 79%

𝟎. 𝟖𝟐𝟓 <
𝒓𝑨+𝒓𝑿

𝟐(𝒓𝑩+𝒓𝑿)
< 𝟏. 𝟎𝟓𝟗

ionic radii

New factor: accuracy 92%
𝒓𝑿

𝒓𝑩
− 𝒏𝑨 𝒏𝑨 −

Τ𝒓𝑨 𝒓𝑩

𝐥𝐧 Τ𝒓𝑨 𝒓𝑩
< 𝟒. 𝟏𝟖

oxidation state C. Bartel et al., Sci. Adv. 5, eaav0693 (2019) 



SISSO: Examples

• Adsorption of molecules on metal surfaces

M. Andersen et al., ACS Catal. 9, 2752 (2019)

Adsorption of C, CH, CO, H, O, OH)

previous state of the art

1%

99%

maximum 
absolute error

1%

median
25%

75%



for each subgroup calculate objective function:

f = Nsubgroup/Nall × |meansubgroup – meanall|× (1 - variancesubgroup/varianceall)

Data mining: Subgroup discovery

W. Klösgen, Advances in Knowledge Discovery and Data Mining. Palo Alto, CA: AAAI Press; 1996, 249

Subgroups are defined by selectors 𝝈 expressed as “AND” combinations of statements like 
“band gap < 2 eV”, “atom radius > 1.4 Å”, etc.
SGD algorithm: find subgroups that maximize quality function

Numerical separators (“band gap < 2 eV”) from k-means clustering (unsupervised learning)
Search for subgroups: Monte Carlo or branch-and-bound algorithm



Data mining: Subgroup discovery

M. Boley et al., Data Min. Knowl. Disc. 31, 1391 (2017); B. Goldsmith et al., New J. Phys. 19, 013031 (2017)



Data mining: Subgroup discovery

M. Boley et al., Data Min. Knowl. Disc. 31, 1391 (2017); B. Goldsmith et al., New J. Phys. 19, 013031 (2017)



Data mining: Subgroup discovery

M. Boley et al., Data Min. Knowl. Disc. 31, 1391 (2017); B. Goldsmith et al., New J. Phys. 19, 013031 (2017)



Subgroup discovery: CO2 activation by adsorption

C-O bond elongation, O-C-O 
bending angle → indicators 
of activation



Oxides:

• stable (structurally and 

compositionally) under increased 

temperatures;

• more resistant for poisoning;

• activation is frequently observed

dry reforming of methane:

CO
2

+ CH
4

= 2H
2

+ 2CO

Sabatier reaction:

CO
2

+ 4H
2

= CH
4

+ 2H
2
O

partial hydrogenation:

CO
2

+ 3H
2

= CH
3
OH + H

2
O

Subgroup discovery: CO2 activation by adsorption



Subgroup discovery: CO2 activation by adsorption

C-O bond elongation, O-C-O bending angle → indicators of activation →

Which surface properties lead to desired indicators? 

Use subgroup discovery to find materials that optimize activation indicators
for each subgroup calculate objective function:

f = Nsubgroup/Nall × (meansubgroup – meanall) × (1 - variancesubgroup/varianceall)

Maximize C-O bond length or O-C-O bending 



Subgroup discovery: CO2 activation by adsorption

71 oxide materials

141 surfaces with Miller indexes ≤ 2

270 adsorption sites

A2+B4+O3, A3+B3+O3, A1+B5+O3, AO, BO2, A2O3 (B2O3), A2O, BO



Subgroup discovery: CO2 activation by adsorption

GaAlO3(110)-2

Ga2O3(212)

In2O3(001)

)

GaAlO3(110)-1

Al2O3(010)

CaO(001)

charged gas-
phase CO

2

ortho-InAlO3(121)

ScGaO3(110)



Primary features
Atom:

electron affinity         ionization potential                 electronegativity

r
l(HOMO)

, r
l-1

, r
l+1

atomic numbers

Material:

work function          band gap              Cbm surface form. energy

Site-specific features:

electrostatic potential                 Hirshfeld charge              bond-valence of O

coordination number of O          vdW C
6
-coefficient           polarizability

distances to 1st, 2nd, 3d nearest cations                   local-structure parameters  

1st, 2nd, 3d, 4th moments 

DOS moments: center, width, skewness, kurtosis

energy of maximum

energy of topfeatures of 

O 2p-PDOS



Subgroup discovery: Adsorbed CO2 properties



Subgroup discovery: Analysis of the OCO angle

whole sampling

smaller angles

larger angles

rest subgroup

sites delivering smaller angles (59 

adsorption sites):

(energy of O 2p band maximum > -6.0 eV) AND 

(distance from O-site to first nearest cation > 1.8 Å) AND

(distance from O-site to second nearest cation > 2.1 Å)

Most of the site delivering smaller OCO angles are on ionic (basic) materials



Subgroup discovery: Analysis of the C-O bond length

sites delivering larger l(CO) (33 sites):

(cation charge < 0.5e) AND 
(work function ≥ 5.2 eV) AND 

(distance from O site to second nearest cation  ≥ 2.14 Å)

LaGaO
3
– cathode material in high-temperature 

electrochemical CO
2

reduction;

KNbO
3
– photocatalytic reduction of CO

2
into CH

4
;

NaNbO
3
– photocatalyst for CO

2
reduction with ~70% 

of CO selectivity;

NaSbO
3
– material for CO

2
capture and storage (CCS)



Subgroup discovery: Alternative mechanisms of CO2 activation

Longer C-O implies smaller OCO angles, but not too small → no catalyst poisoning 



SISSO and SGD software

SISSO: https://github.com/rouyang2017/SISSO

Subgroup discovery:      https://bitbucket.org/realKD/creedo/wiki/Home



Decision trees

feature 3 < 0.5 

yes no

feature 2 > -6.0 
feature 1 ≥ 5.2

yes no

feature 2 > 1.8
bad catalyst

yes

good catalyst

no

bad catalyst

yes no

feature 2  < -4

yes

bad catalyst good catalyst

no

bad catalyst

Example: Categorical 
decision tree

root node

internal node
branch

leaf (terminal) node
Split criterion: σ𝒑𝒌(𝟏 − 𝒑𝒌) → 𝐦𝐢𝐧

proportion of same-category inputs



Decision tree regression

Choose splits that 
minimize variance of 
target property within 
each subgroup

feature 3 < 0.5 

yes no

feature 2 > -6.0 
feature 1 ≥ 5.2

yes no

feature 2 > 1.8

yes

P > 1.28

no

yes no

feature 2  < -4

yes
no

1.28 > P > 1.26 1.26 ≥ P > 1.25 1.23 ≥ P > 1.22

1.24 ≥ P > 1.23

Split criterion: σ 𝐭𝐚𝐫𝐠𝐞𝐭 𝐩𝐫𝐨𝐩𝐞𝐫𝐭𝐲 − 𝐭𝐚𝐫𝐠𝐞𝐭 𝐩𝐫𝐨𝐩𝐞𝐫𝐭𝐲 𝟐 → 𝐦𝐢𝐧 within each subgroup 

1.25 ≥ P > 1.24



Decision tree properties

• Simple to understand and interpret

• Global (important difference to subgroup discovery, which finds locally unique groups)

• Easy to overfit (can use LASSO-type penalty to solve this problem)

• Small change in data can lead to large change in the tree

• Relatively inaccurate 



Random forest®

1) Perform tree regression or classification on several randomly selected subsets of data

2) In each tree, at each split choose randomly a fixed number of features, for which the 
best split is determined

3) Average predictions from the obtained trees

Properties:

• More accurate than a single tree (“each tree keeps other trees from making mistakes)

• Interpretability of the model is lost

• Can be used to select primary features for other approaches such as SISSO



Random forest®

Interesting application: Identify most important surface structural features that determine 
surface stability 



Computational databases

General idea: Create infrastructure for storing, querying, and analyzing computational 
materials science data 



Leaders: Kristin Persson (Lawrence Berkeley National Laboratory), Gerbrand Ceder
(University of California at Berkeley)

Structures are mostly from ICSD database (https://icsd.products.fiz-karlsruhe.de/) 



Materials Project: Features



Materials Project: Features

All calculations are performed with GGA or GGA+U

Typical data: relaxed crystal structure, band structure, DOS, energy from the convex hull, 
elastic properties, X-ray  absorption and diffraction spectra, piezoelectric tensors, 





The Open Quantum Materials Database: Features 

All calculations are performed with GGA or GGA+U

Structures include also hypothetical materials (not known experimentally)

Typical data: Formation and decomposition energies 





Automatic FLOW library: Features 

Leader: Stefano Curtarolo (Duke University)

Calculations performed with GGA, GGA+U, ACBN0 (pseudo-hybrid)

Typical data: Relaxed geometries, electronic and phonon band structures, magnetic 
properties, thermodynamic properties

Provides tools for performing high-throughput calculations





The NOMAD (Novel Materials Discovery) Laboratory

Leader: Matthias Scheffler (Fritz Haber Institute of Max Planck Society)

Both a database and a repository (store your data)

Includes data from AFLOW, OQMD, Materials Project

Automatic parsing of inputs and outputs from all major electronic-structure packages 

Common format (metadata) for data from different electronic-structure packages

Parsable data: Total energies, geometry optimization, molecular dynamics, thermodynamic 
properties





Automated Interactive Infrastructure and Database 
for Computational Science (AiiDA)

Leader: Nicola Marzari (EPFL, Switzerland)

Provides tools for performing high-throughput calculations



SISSO tutorial

Example: Water molecule adsorption energy on metal surfaces: d-band center versus SISSO

Training data:

45 different transition metal 

surfaces 

adsorption energies of the 

most stable adsorption 

configurations 

(totally 45 data points)



Class Name Abbreviation

Atomic Atom radius R

Electronegativity E

HOMO H

LUMO L

Ionization energy I

Bulk d band center DB

Fermi energy F

Surface d band center DS

Chemical potential C

Coordination number CN

Effective coordination number ECN

SISSO tutorial: Primary features


