Classical molecular dynamics

Lecture 4

Alexander Kvashnin

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- MLpotentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- MLpotentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Born-Oppenheimer approximation

- Nucleiare much heavierthan electrons
- Nuclei move much slower than electrons
- We can decouple electronic and nuclear motions

Born-Oppenheimer approximation

- Nucleiare much heavierthan electrons
- Nuclei move much slowerthan electrons
- We can decouple electronic and nuclear motio

Hamiltonian

$$
\widehat{H} \psi(\vec{r}, \vec{R})=E \psi(\vec{r}, \vec{R}) \Rightarrow \begin{aligned}
& \widehat{H}=\widehat{H}_{1}(\vec{r})+\widehat{H}_{2}(\vec{R}) \\
& \text { Separable } \\
& \text { Hamiltonian }
\end{aligned} \Rightarrow \begin{aligned}
& \psi(\vec{r}, \vec{R})=\psi_{1}(\vec{r}) \psi_{2}(\vec{R}) \\
& E=E_{1}+E_{2}
\end{aligned}
$$

$$
\widehat{H}=\widehat{T}_{N}(\vec{R})+\widehat{T}_{e}(\vec{r})+\widehat{V}_{N N}(\vec{R})+\widehat{V}_{e N}(\vec{r}, \vec{R})+\widehat{V}_{e e}(\vec{r})
$$

Forthis case

$$
\Psi_{\mathrm{T}}(\vec{r}, \vec{R})=\Psi_{e}(\vec{r}, \vec{R}) \Psi_{N}(\vec{R}) \begin{aligned}
& \text { Approximately } \\
& \text { Separable! }
\end{aligned}
$$

$$
\widehat{H} \Psi_{e}(\vec{r}, \vec{R}) \Psi_{N}(\vec{R})=E_{t o t} \Psi_{e}(\vec{r}, \vec{R}) \Psi_{N}(\vec{R})
$$

Born-Oppenheimer approximation

Eectronic problem $\quad \widehat{H}_{e}=\widehat{T}_{e}(\vec{r})+\hat{V}_{e N}(\vec{r}, \vec{R})+\hat{V}_{e e}(\vec{r})$

$$
\left\{-\sum_{i} \frac{\hbar^{2}}{2 m} \nabla_{i}^{2}+\frac{1}{4 \pi} \sum_{i, n} \frac{Z_{n} e^{2}}{\left|r_{i}-R_{n}\right|}+\frac{1}{4 \pi} \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{\left|r_{i}-r_{j}\right|}\right\} \Psi_{e}(\vec{r}, \vec{R})=E_{t o t} \Psi_{e}(\vec{r}, \vec{R})
$$

$$
\left\{\hat{T}_{N}(\vec{R})+\hat{E}_{e}(\vec{R})+\hat{V}_{N N}(\vec{R})\right\} \Psi_{N}(\vec{R})=E_{t o t} \Psi_{N}(\vec{R})
$$

$$
\widehat{H}_{N} \Psi_{N}(\vec{R})=\left\{-\sum_{n} \frac{\hbar^{2}}{2 M} \nabla_{n}^{2}+E_{e}(\vec{R})+\frac{1}{4 \pi} \frac{1}{2} \sum_{n \neq m} \frac{Z_{n} Z_{m} e^{2}}{\left|R_{n}-R_{m}\right|}\right\} \Psi_{N}(\vec{R})=E_{t o t} \Psi_{e}(\vec{R})
$$

The nuclei move in a potential created by the electrons

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

When molecular mechanics works

Skolkovo Institute of Science and Technology

"exactly" in Bom-Oppenheimer approximation

MolecularMechanic s is based on several assumptions:

- It treats the electrons around a nucleus and the nucleus itself as a perfect sphere.
- The bonds between molecules are treated as springs.
- Potential functions rely on experimental parameters such as force constants and equilibrium volumes.
- The potential energy function is the sum of individual functions for bond stretching, angle bending, torsional energies, and non-bonding interactions.

So,

- We are not interested in electronic properties
- Electronic state remains unchanged

Think about examples when MM does not work

- Electronic dynamics is irelevant

Challenge is to approximate exact Potential Energy Surface (PES) by interatomic potentials Grand challenge is to make such potentials tra nsferable

Think about examples when transferability is hardly possible

Molecular mechanics

Molecular Mechanics is a computational method that computes the potential energy surface for a partic ular a rangement of atoms using potential functions that are derived using classic al physics.

Molec ular Mechanics methods use classic al type models (no quantum mechanics) to predict the energy of a system as a function of atomic coordinates, i.e. approximate PES.

Can be used to:

- Optimize geometry (of minima or transition state)
- Calculate relative energies between confomers orpolymorphs

Molecular mechanics

Molecular Mechanics is a computational method that computes the potential energy surface for a particular arrangement of atoms using potential functions that are derived using classic al physics.
Molecular Mechanics methods use classical type models (no quantum mechanics) to predict the energy of a system as a function of atomic coordinates, i.e. approximate PES.

Can be used to:

- Optimize geometry (of minima or transition state)
- Calculate relative energies between conformers or polymo

But mostly used to:

- Run moleculardynamics
- Sample PES
- Large-scale simulations

Why can we do it?

- Chemical bonding islocal
- Number of local structural pattems is limited

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Potentials

Interatomic potentials are mathematical functions to calculate the potential energy of a system of a toms with given positions in space

Examples of quantitative properties and qualitative phenomena that are explored with interatomic potentials include
lattice parameters, surface energies, interfacial energies, adsorption, cohesion, themal expansion, and elastic and plastic material behavior, as well aschemical reactions

Langmuir 10, 26, 2, 1165-1171 (2010)

Interatomic potentialscan be divided into several types

- Pairpotentials
- Force fields
- ML potentials

Potentials

Pair potential

is a function that describes the potential energy of two interacting objects solely as a function of the distance between them

Mostly used for gases, closely packed lattices (metals, ionic crystals), but not for covalent compounds

Lennard-J ones potential

σ is the distance at which the potential energy is 0

D_{e} is the depth of potential well, α controls the width of the potential
ε is the depth of potential well

Embedded atom model

EAM is an approximation describing the energy between atoms and is a type of interatomic potential The energy is a function of a sum of functions of the separation between an atom and its neighbors
 contribution
$r_{i j}$ is the distance between atoms i and $\mathrm{j}, \phi_{\alpha \beta}$ is a pair-wise potential function, ρ_{β} is the contribution to the electron charge density from atom j of type β at the location of atom i, F is an embedding function that represents the energy required to place atom i of type a into the electron cloud
For a binary alloy, the EAM potential requires seven functions:
three pair-wise interactions ($A-A, A-B, B-B$),
two embedding functions, and
two electron cloud contribution functions.
Generally, these functions a re provided in a tabularized format and interpolated by cubic splines

Potentials

a force field is a computational method that is used to estimate the forces between atoms within molecules, between molecules, and between atoms in solids

The parameters for a chosen energy function may be derived from experiments in physics and chemistry, calculations in quantum mechanics, or both

General contributions

- Bonding interactions = stretching + bending + torsion
- Non-bonding interactions = van der Waals +electrostatic
- Cross-terms

$$
E_{F F}=E_{s t r}+E_{\text {bend }}+E_{\text {tors }}+E_{v d w}+E_{\text {el }}+E_{\text {cross }}
$$

Mostly used force fields

AMBER (Assisted Model Building and Energy
Refinement)
CFF (Consistent Force Field)
CHARMM (Chemistry at HARvard Molecular
Mechanics)
IFF (Interface Force Field)
MMFF (Merck Molecular Force Field)
OPLS (Optimized Potential for Liquid Simulations
UFF (Universal Force Field)

ML potentials

Will be disc ussed later

 and in a separate lecture
Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molecular dynamics
- Monte-Carlo

The stretch energy

Sta rt with Taylor expansion of energy $\mathbf{E}(\mathbf{R})$ near the minimum

$$
\begin{aligned}
& E_{s t r}\left(R^{i j}-R_{0}^{i j}\right)=E(0)+\frac{d E}{d R}\left(R^{i j}-R_{0}^{i j}\right)+\frac{1}{2} \frac{d^{2} E}{d R^{2}}\left(R^{i j}-R_{0}^{i j}\right)^{2} \\
& \text { banishes at } \\
& \text { minimum }
\end{aligned}
$$

$$
E_{\text {str }}\left(\Delta R^{i j}\right)=k_{2}^{i j}\left(\Delta R^{i j}\right)^{2}+k_{3}^{i j}\left(\Delta R^{i j}\right)^{3}+k_{4}^{i j}\left(\Delta R^{i j}\right)^{4}+\cdots ~ \mathrm{P} 4{ }_{\mathrm{P} 2} \text { term }
$$

Altemative forms include Morse potential

$$
E_{M}\left(\Delta R^{i j}\right)=D_{e}\left(1-e^{-\alpha \Delta R^{i j}}\right)^{2}
$$

However, numerically friendly polynomial expansion is usually used instead of Morse potential Every pair of atoms (i,j) requires at least 2 parameters:

$$
k_{2}^{i j} \text { and } R_{0}^{i j}
$$

The bending energy

$$
E_{b e n d}\left(\theta^{i j k}-\theta_{0}^{i j k}\right)=k_{2}^{i j k}\left(\theta^{i j k}-\theta_{0}^{i j k}\right)^{2}
$$

sp^{3}

Must be accurate in region of few kT above the minimum (accessible conformational space)
Problems with $\theta=180^{\circ}$, multiple minima, out-of-plane bending

Every triple of atoms (i,j,k) requires 2 parameters:

$$
k_{2}^{i j} \text { and } \theta_{0}^{i j k}
$$

The torsion energy

Torsion energy depends on the dihedral angle between quadruplets of atoms

$$
\begin{aligned}
E_{\text {tors }}\left(\omega^{i j k l}\right)= & \frac{1}{2} V_{1}^{i j k l}\left(1+\cos \left(\omega^{i j k l}\right)\right)+ \\
+ & \frac{1}{2} V_{2}^{i j k l}\left(1-\cos \left(2 \omega^{i j k l}\right)\right)+ \\
& +\frac{1}{2} V_{3}^{i j k l}\left(1+\cos \left(3 \omega^{i j k l}\right)\right)
\end{aligned}
$$

Dihedral angle is defined as signed angle between ijk and jkl planes

- Dihedral angles are usually flexible and correspond to large-a mplitude motions
- Energy scale is 1-2 orders of magnitude smaller than for stretching and bending
- Includes non-bonding interactions
- Every quadruplet of atoms (i,j,k,I) requires a set of parameters:

$$
V_{1}^{i j k l}, V_{2}^{i j k l}, V_{3}^{i j k l}, \ldots
$$

Impropers

An improper torsion angle is one where the torsion angle is not defined by four angles connected sequentially. It defines improper interactions between quadruplets of atoms

Proper torsion angle

Improper torsion angle

$$
E_{i m p}\left(\phi^{i j k l}\right)=k_{i j k l}\left(\phi_{i j k l}-\phi_{0}\right)^{2}
$$

- Correspond to small-amplitude motions, so the harmonic potential is good enough
- Every planar quadruplet of atoms (i,j,k,l) requires only a single parameter:

$$
k_{i j k l}
$$

The van der Waals energy

- Accounts for all non-electrostatic interaction between nonbonded atoms
- Repulsive at short distance due to steric interaction (Pauli exchange)
- Attractive at large distances due to dispersion interaction, induced dipoles $\varepsilon^{A B}=\left(\varepsilon^{A A} \varepsilon^{B B}\right)^{1 / 2}$

$$
V_{L J}=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

- The Lennard-J ones (L) potential is commonly used
- For LI potential every pair of atoms (A,B) requires 2 parameters: ε and σ
- To minimize number of parameters one uses
- Usually, vdW interactions are excluded between bonded atoms Some other forms
The Buckingham potential $E_{\text {buck }}(r)=\varepsilon\left[\frac{6}{\alpha-6} e^{\alpha\left(1-r / R_{0}\right)}-\frac{\alpha}{\alpha-6}\left(\frac{R_{0}}{r}\right)^{6}\right]$

Hydrogen bonding potential

$$
E_{H-b o n d}(r)=\varepsilon\left[5\left(\frac{R_{0}}{r}\right)^{12}-6\left(\frac{R_{0}}{r}\right)^{10}\right]
$$

Cross-terms

Skoltech
 Skolkovo Institute of Science and Technology

$$
E_{F F}=E_{s t r}+E_{\text {bend }}+E_{\text {tors }}+E_{v d w}+E_{\text {el }}+E_{\text {cross }}
$$

The various tems in the total energy are not independent, and cross-terms should be considered

$$
u_{i}(\vec{x})=u_{i}(0)+\sum_{j} x_{j}\left(\frac{\partial u_{i}}{\partial x_{j}}\right)_{0}+\sum_{k \leq j} \sum_{j} x_{j} x_{k}\left(\frac{\partial^{2} u_{i}}{\partial x_{j} \partial x_{k}}\right)_{0}
$$

For example, stretching-
bending: $\quad E_{\text {str } / \text { bend }}=k^{A B C}\left(\theta^{A B C}-\theta_{0}^{A B C}\right)\left[\left(R^{A B}-R_{0}^{A B}\right)-\left(R^{B C}-R_{0}^{B C}\right)\right]$
Otherterms

$$
\begin{array}{ll}
E_{\text {str } / \text { str }}=k^{A B C}\left(R^{A B}-R_{0}^{A B}\right)\left(R^{B C}-R_{0}^{B C}\right) & \\
E_{\text {bend } / \text { bend }}=k^{A B C D}\left(\theta^{A B C}-\theta_{0}^{A B C}\right)\left(\theta^{B C D}-\theta_{0}^{B C D}\right) & \text { Cross-tem } \\
E_{\text {str } / \text { tors }}=k^{A B C D}\left(R^{A B}-R_{0}^{A B}\right) \cos \left(n \omega^{A B C D}\right) & \text { of problen } \\
E_{\text {bend/tors }}=k^{A B C D}\left(\theta^{A B C}-\theta_{0}^{A B C}\right) \cos \left(n \omega^{A B C D}\right) & \\
E_{\text {bend/tors/bend }}=k^{A B C D}\left(\theta^{A B C}-\theta_{0}^{A B C}\right)\left(\theta^{B C D}-\theta_{0}^{B C D}\right) \cos \left(n \omega^{A B C D}\right)
\end{array}
$$

Discussion

Illustrate all elements of a force field using this molecule:

Skolkovo Institute of Science and T

Type	Symbol	Description	Type	Symbol	Description
1	C	sp^{3}-carbon	28	H	enol or amide
2	C	sp^{2}-carbon, alkene	48	H	ammonium
3	C	sp^{2}-carbon, carbonyl, imine	36	D	deuterium
4	C	sp-carbon	20	1 p	lone pair
22	C	cyclopropane	15	S	sulfide ($\mathrm{R}_{2} \mathrm{~S}$)
29	C.	radical	16	S^{+}	sulfonium ($\mathrm{R}_{3} \mathrm{~S}^{+}$)
30	C^{+}	carbocation	17	S	sulfoxide ($\mathrm{R}_{2} \mathrm{SO}$)
38	C	sp^{2}-carbon, cyclopropene	18	S	sulfone ($\mathrm{R}_{2} \mathrm{SO}_{2}$)
50	C	sp^{2}-carbon, aromatic	42	S	sp^{2}-sulfur, thiophene
56	C	sp^{3}-carbon, cyclobutane	11	F	fluoride
57	C	sp^{2}-carbon, cyclobutene	12	Cl	chloride
58	C	carbonyl, cyclobutanone	13	Br	bromide
67	C	carbonyl, cyclopropanone	14	I	iodide
68	C	carbonyl, ketene	26	B	boron, trigonal
71	C	ketonium carbon	27	B	boron, tetrahedral
8	N	sp^{3}-nitrogen	19	Si	silane
9	N	sp^{2}-nitrogen, amide	25	P	phosphine
10	N	sp-nitrogen	60	P	phosphor, pentavalent
37	N	azo or pyridine ($-\mathrm{N}=$)	51	He	helium
39	N^{+}	sp^{3}-nitrogen, ammonium	52	Ne	neon
40	N	sp^{2}-nitrogen, pyrrole	53	Ar	argon
43	N	azoxy ($-\mathrm{N}=\mathrm{N}-\mathrm{O}$)	54	Kr	krypton
45	N	azide, central atom	55	Xe	xenon
46	N	nitro (-NO2)	31	Ge	germanium
72	N	imine, oxime ($=\mathrm{N}-$)	32	Sn	tin
6	O	sp^{3}-oxygen	33	Pb	lead
7	O	sp^{2}-oxygen, carbonyl	34	Se	selenium
41	O	sp^{2}-oxygen, furan	35	Te	tellurium
47	O^{-}	carboxylate	59	Mg	magnesium
49	O	epoxy	61	Fe	iron (II)
69	O	amine oxide	62	Fe	iron (III)
70	O	ketonium oxygen	63	Ni	nickel (II)
5	H	hydrogen, except on N or O	64	Ni	nickel (III)
21	H	alcohol (OH)	65	Co	cobalt (II)
23	H	amine (NH)	66	Co	cobalt (III)
24	H	carboxyl (COOH)			

MM2 force field

- Each of the 71 atom types has two van der Waals parameters, R_{0}^{A} and ε^{A}, giving $\mathbf{1 4 2}$ parameters
- There are approximately $\mathbf{1} / \mathbf{2 \times 3 0 \times 3 0}=\mathbf{4 5 0}$ different $E_{\text {str }}$ terms, each requiring at least two parameters $R_{0}^{A B}$ and $k^{A B}$, for a total of at least 900 parameters
- There are approximately $1 / 2 \times 30 \times 30 \times 30=\mathbf{1 3 5 0 0}$ different $E_{\text {bend }}$ tems, each requiring at least two parameters $k^{A B C}$ a nd $\theta_{0}^{A B C}$, for a total of at least 27000 parameters
- There are approximately $1 / 2 \times 30 \times 30 \times 30 \times 30=\mathbf{4 0 5 0 0 0}$ different $\mathrm{E}_{\text {tors }}$ tems, each requiring at least three parameters $V_{1}^{A B C D}, V_{2}^{A B C D}, V_{3}^{A B C D}$ for a total of at least 1215000 pa ra meters
- Cross-terms may add a nother million possible parameters

Table 2.3 Comparison of possible and actual number of MM2(91) parameters

Term	Estimated number of parameters	Actual number of parameters
$E_{\text {vdw }}$	142	142
$E_{\text {str }}$	900	290
$E_{\text {bend }}$	27000	824
$E_{\text {tors }}$	1215000	2466

Reduce number of parameters

- Assign a tomic charges (e.g. from DFT) instead of fitting them
- Use element-wise ப parametrization instead of pair-wise
- Group atom types into atom classes for bonded interactions
- O mit unnecessary dihedral and minimize number of impropers

Parametrization

How to do it? Define functional form, objective function, and fit parameters

$$
\operatorname{ErrF}(\text { parameters })=\sum_{i}^{\text {data }} \text { weight }_{i} \cdot\left(\text { reference value }-{\text { calculated value })_{i}^{2}}^{2}\right.
$$

1) How to choose functional form:

- The choice is not unique and depends on material, scales, and goals
- Linearoptimization is preferable
- Systematic improvement of accuracy is challenging for non-ML potentials

2) What are reference values:

- Experimental data (vibrational frequencies, X-ray structures, heats of formation) were commonly used in past, but they are often incomplete and have large error bars (especially lab-to-lab and batch-to-batch variations
- Today high-throughput DFT calculations are used, including semi-automated parametrization routines (e.g. AMBER-DFTor ML-potentials)

3) How to define and generate fitting (training) dataset

- The dataset must be representative (cover required part of PES with proper weights) and suitable for fitting (confidence intervals for all parameters must be reasonable, parameter dependencies must be resolved)
Parametrization is a diffic ult process requiring good knowledge of underlying physic al phenomena/ interactions, chemical intuition, use of experimental data and utilization of electronic structure codes

Various types of potentials

Different c lasses of materials require different approaches:

- Simple metals (AI - yes, Pu - no) - embedded-atom (EAM)
- Ionic solids (NaCl) - embedded-ion model
- Complex bonding - charge optimized ma ny body potential (COMB)
- Tetrahedral semiconductors/insulators (Si , SiOTetrahedral semiconductors/insulators (Si, SiOTetrahedral semic onductors/insulators ($\mathrm{Si}, \mathrm{SiO}_{2}$) - Tersoff potentia ls
- Water - 7P3/4/5P models
- п-conjugated molecules-MM3 force field + Huckel model
- Biomolecules - well parameterized AMBER, CHARMM, GROMOS with residue-based parametrization (proteins) and united a toms
- Attemptsto make universal force field for molecules - OPLS, UFF, DREIDING
- Pola rizable force- DRUDE, AMOEBA
- Chemical reactions - reactive force (ReaxFF)

Differentstates of the same molec ule require different values of parameters
Anion, cation, excited singlet S_{1}, etc
Fiting-friendly parametrization (allow for black-box fitting and systematic improvement by ML a pproa ches):

$$
E=\sum_{i} E\left(\text { local geometry of } \mathrm{i}^{\text {th }} \text { atom }\right)+E_{\text {long-range }}
$$

Computational efficiency

- Make no mistake: molecular mechanics is MUCH faster compared to any electronic structure model based on quantum mechanics!
- Evaluation of the non-bonded energy is the most time-consuming step growing $\sim \mathrm{N}^{2}$
Can be reduced to $\sim \mathrm{N}$ using cut-off distances or advanced summation techniques

Table 2.6 Number of terms for each energy contribution in $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{n-2} \mathrm{CH}_{3}$

n	$N_{\text {atoms }}$	$E_{\text {str }}$	$E_{\text {bend }}$	$E_{\text {tors }}$	$E_{\text {vdw }}$
10	32	$31(5 \%)$	$30(10 \%)$	$81(14 \%)$	$405(70 \%)$
20	62	$61(3 \%)$	$60(6 \%)$	$171(8 \%)$	$1710(83 \%)$
50	152	$151(1 \%)$	$300(3 \%)$	$441(4 \%)$	$11025(93 \%)$
100	302	$301(1 \%)$	$600(1 \%)$	$891(2 \%)$	$44550(96 \%)$
	N	$(N-1)$	$2(N-2)$	$3(N-5)$	$\frac{1}{2} N(N-1)-3 N+5$

Benchmarks by LAMMPS

Potential	System	\# Atoms	Timestep	Neighs/atom	Memory	CPU	LJ Ratio
Granular	chute flow	32000	0.0001 tau	7.2	33 Mb	$2.08 \mathrm{e}-7$	0.26x
FENE bead/spring	polymer melt	32000	0.012 tau	9.7	8.4 Mb	$2.86 \mathrm{e}-7$	0.36x
Lennard-Jones	LJ liquid	32000	0.005 tau	76.9	12 Mb	$8.01 \mathrm{e}-7$	1.0x
DPD	pure solvent	32000	0.04 tau	41.3	9.4 Mb	$1.22 \mathrm{e}-6$	1.53 x
EAM	bulk Cu	32000	5 fmsec	75.5	13 Mb	$1.87 \mathrm{e}-6$	2.34x
REBO	polyethylene	32640	0.5 fmsec	149	33 Mb	$3.18 \mathrm{e}-6$	3.97x
Stillinger-Weber	bulk Si	32000	1 fmsec	30.0	11 Mb	$3.28 \mathrm{e}-6$	4.10x
Tersoff	bulk Si	32000	1 fmsec	16.6	9.2 Mb	$3.74 \mathrm{e}-6$	4.67x
ADP	bulk Ni	32000	5 fmsec	83.6	25 Mb	$5.58 \mathrm{e}-6$	6.97x
EIM	crystalline NaCl	32000	0.5 fmsec	98.9	14 Mb	$5.60 \mathrm{e}-6$	6.99x
Peridynamics	glass fracture	32000	22.2 nsec	422	144 Mb	7.46e-6	9.31 x
SPC/E	liquid water	36000	2 fmsec	700	86 Mb	$8.77 \mathrm{e}-6$	11.0x
CHARMM + PPPM	solvated protein	32000	2 fmsec	376	124 Mb	$1.13 \mathrm{e}-5$	14.1x
MEAM	bulk Ni	32000	5 fmsec	48.8	54 Mb	$1.32 \mathrm{e}-5$	16.5x
Gay-Berne	ellipsoid mixture	32768	0.002 tau	140	21 Mb	$2.20 \mathrm{e}-5$	27.5x
BOP	bulk CdTe	32000	1 fmsec	4.4	74 Mb	$2.51 \mathrm{e}-5$	31.3x
AIREBO	polyethylene	32640	0.5 fmsec	681	101 Mb	$3.25 \mathrm{e}-5$	40.6x
ReaxFF/C	PETN crystal	32480	0.1 fmsec	667	976 Mb	$1.09 \mathrm{e}-4$	136x
COMB	crystalline SiO 2	32400	0.2 fmsec	572	85 Mb	$2.00 \mathrm{e}-4$	250x
eFF	H plasma	32000	0.001 fmsec	5066	365 Mb	$2.16 \mathrm{e}-4$	270x
ReaxFF	PETN crystal	16240	0.1 fmsec	667	425 Mb	$2.84 \mathrm{e}-4$	354x
VASP/small	water	192/512	0.3 fmsec	N/A	320 procs	26.2	17.7 e 6
VASP/medium	CO 2	192/1024	0.8 fmsec	N/A	384 procs	252	170e6
VASP/large	Xe	$432 / 3456$	2.0 fmsec	N/A	384 procs	1344	908 e 6

Other facts

- Blind use of empinical potentials is very dangerous and can lead to errors.
- Well-parameterized potentials can give more accurate geometries and relative energies than low-level QM methods
- Often FF are bound to specific MD code (AMBER, CHARMM etc.) so that parameters are not easily transferable between codes.

Typical workflow

1) Choose the functional form of empinic al potentia ls:

- define atom types;
- decide on type of potentials and number of parameters (e.g. not all dihedral angles are usually needed, parametrization of $Ц$ interactions can be chosen element-wise orpair-wise)
- which parameters are fitted, and which are assigned (e.g. often it is bad idea to fit charges in force fields, for intramolecular dynamics ப parameters can be assigned from generic tables)

2) Force fields require topology - define it
3) Provide initial parametrization
(from generic force field like OPLS or from DFT calc ulations)
4) Parametrize

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

ML as interpolation

... data driven and multidimensional

Problem

Issue

Solution

No tra nsferability w.r.t. the number of a toms

Use locality! An atom interacts with only 10-100 neighbor

Why is this important?

A dream of computational materials scientist

Molec ular modeling

$\sim 40 \%$ of superc omputing time is spent on Molec ular Modeling

Molec ular dynamics scales

Number of ta sks is limited by the available computational resources depending on the number of atoms in the system.

The goal is to increase timescale of simulations using the same number of computational resources

Machine learning ideology

1. Choose a (machine-leaming) model $\mathbf{E}=\mathbf{E}(\mathbf{X}), X$ is a tomic configuration
2. We want to minimize | E-Eqm|
so we
Generate data: $x^{(1)}, x^{(2)}, \ldots ; \mathrm{Eqm}^{\mathrm{qm}}\left(\mathrm{x}^{(1)}\right), \mathrm{Eqm}^{\mathrm{qm}}\left(\mathrm{x}^{(2)}\right), \ldots ; \mathrm{fqm}^{\left(x^{(1)}\right)}, \mathrm{fqm}\left(\mathrm{x}^{(2)}\right), \ldots$

Minimize on data:

$$
\sum_{i}\left|E\left(x^{(i)}\right)-E^{q m}\left(x^{(i)}\right)\right|^{2}+(\text { forces })+\cdots
$$

But what if sampling the right $x^{(0)}$ is a part of the problem?

Active learning / learning

A crucial and often time-consuming part is the construction of the training set.
Active learning is a machine-learning technique allowing one to entrust these training set refinement iterations to a computer, thus completely automating the training set construction.

The no-leaming and classical LOTF MD are not completely reliable: on average every 15 ps the no-leaming MD fails, i.e., escapes into an unphysical region in the phase space.
The classical LOTF ten times more reliable (failure time of 150 ps) at the expense of extra 1500 QM calculations.
The active LOTF makes MD completely reliable as measured over the first 0.5μ s of simulation time.

Active learning

Classic MD	AIMD
MD	MD
Empirical potential	DFT
+ Fast - Qualitative accuracy only	+Accurate - Time consuming

MLIPs

Nowadays there are several types of machine leaming interatomic potentials (MLPs) are known and used

GAP

Gaussian
Approximation

A 2D illustration of the atomic neighbor density function used in GAP

Bartók et al.

NNP

Neural Network

Behler et al.

MTP
Moment Tensor

Shapeev et äl.

Comparison of MLIPs

Skolkovo Institute of Science and Technology

Performance and Cost Assessment of Machine Learning Interatomic Potentials
Published as part of The Journal of Physical Chemistry virtual special issue "Machine Learning in Physical Chemistry".
Yunxing Zuo, Chi Chen, Xiangguo Li, Zhi Deng, Yiming Chen, Jörg Behler, Gábor Csányi, Alexander V. Shapeev, Aidan P. Thompson, Mitchell A. Wood, and Shyue Ping Ong
C Cite This: J. Phys. Chem. A 2020, 124, 731-745 \qquad (4) Read Online

A comprehensive DFTdata set was generated for six elements - $\mathbf{L}, \mathbf{M o}, \mathbf{N i}, \mathbf{C u}$, S

Test error versus computational cost for the Mo system. The gray dashed line indicates an approximate Pareto front.
This Pareto frontier represents an optimal trade-off between accuracy and computational cost.
Δ gauge comparison provides quantitative estimate of deviation between the EOS curve from each ML-IAP with that of DFT.

M- D Applic a tio
 n ,

PHYSICAL REVIEW B 99, 064114 (2019)

Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning

Evgeny V. Podryabinkin, ${ }^{1,}$ Evgeny V. Tikhonov, ${ }^{1,2,3}$ Alexander V. Shapeev, ${ }^{1}$ and Artem R. Oganov ${ }^{1,4}$ ${ }^{1}$ Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China ${ }^{3}$ International Center for Materials Discovery, School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072. China
${ }^{4}$ Moscow Institute of Physics and Technology, 9 Institusskiy per., Dolgoprudny: Moscow Region 141701, Russia
(0) (Received 22 February 2018; revised manuscript received 29 November 2018; published 27 February 2019)
 B-12 (6.7058eV/atom) 10 days with DFT 3 days with MLIP

B-28 (6.678eV/atom)
2 months with DFT
5 days with MLIP

Boron structure prediction challenges:

- A lot of a llotropes
- Some allotropes has more than 100 atoms (impossible for DFT)
- Small energy/atom difference between structures with PES minima

B-106
Best Found on MLIP within 2 weeks

$\mathrm{B}-108=\mathrm{B} 12 \times 9$
10 years with DFT
2 weeks with MLIP

M—D AppIIC atIo ns

Hardness is a very difficult characteristic for atomistic simulations
Simulation of nanoindentation of materials by using MTP via direct measurements of
forces and imprints from the indentor (direct by using MTP via direct measurements of
forces and imprints from the indentor (direct simulation of experimental setup)

Nanohardness from First Principles with Active Learning on Atomic Environments
Evgeny V. Podryabinkin,* Alexander G. Kvashnin, Milad Asgarpour, Igor I. Maslenikov, Danila A. Ovsyannikov, Pavel B. Sorokin, Mikhail Yu Popov, and Alexander V. Shapeev Cite This: https//doi.org/10.1021/acs.jact.1c00783 atomistic simulations

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Molecular dynamics Basic pinciples

- Solve Newton's equation of motion for N classical particles (3N coupled equations)

$$
\begin{gathered}
\vec{F}=m \vec{a} \\
\mathrm{E}_{t o t}=\sum_{i=1}^{N} \frac{1}{2} m \vec{v}_{i}^{2}+V(\vec{r}) \\
-\frac{d V}{d \vec{r}}=m \frac{d^{2} \vec{r}}{d t^{2}}
\end{gathered}
$$

- For now, let limit our selves by natural NVE ensemble
- The force depends on positions only (not velocities)
- Each particle is allowed to interact simulta neously with every other particle and can experience an additional extemal potential
- A single point in a 6 N -dimensional phase space (p, r) represents our dynamical system
Our dimensionality: N particles, 3 N -dim
vectors
- Coordinates
- Velocities
- Momenta
- Accelerations
$\vec{r}=\vec{q}=\left(x_{1}, y_{1}, z_{1}, x_{2}, \ldots\right)$ $v=d \vec{r} / d t$
$\vec{p}=m \vec{v}$
$\vec{a}=d \vec{v} / d t$
$V(\vec{r})$
- Potential energy $K(\vec{p})=\sum \frac{1}{2} m \vec{v}_{i}^{2}$
- Kinetic energy
- Forces
$\vec{F}(\vec{p})=d \vec{V} / d \vec{r}$
m_{i}

Ensemble of possible structures of a tryptophan-glycine-silver cluster cation complex, obtained by superimposing the configurations sampled from MD trajectory simulation Phys Rev Lett 101, 213001 (2008)

Molec ular dynamics Typical algoitim

- Initialize: select position a nd velocities
- Propagate: compute all forces, and then determine new positions
- Equilibrate: let the system reach equilibrium for a given themodynamic ensemble (NVE, NPTetc.)
- Sample

(a)

${ }^{100}$

(b)

(f)
accumulate long

(c)

(g)

(d)

Give partic les initial positions

$$
r_{0}=r(t=0), \text { velocities } v_{0}=v(t=0)
$$

Calculate and store energy $=E(t=0)$ a nd other qua ntities at $t=0$

Choose short timestept (typical 0,1-1 fs)

Move particles,
i.e. computer $(t+\Delta t)$ and $(t+\Delta t)$

Move time forward $t=t+\Delta t$

Repeat

Set forces $F(t)$ and accelerations $a(t)$

Move particles,
i.e. computer $(t+\Delta t) \quad \operatorname{and}(t+\Delta t)$

Calculate and store energy $E(t)$ and other quantities at t

Algorithm

Molecular dynamics

Selecting initial positions:

- Interconnection topology should agree with chemic al struc ture
- Avoid short distances- huge energy penalty ($\sim 1 / r^{12}$ for Lenard-J ones)
- Avoid highly non-equilibrium conditions

Selecting initial velocities

- Start with $\mathrm{v}=0$, then allow to equilibrate/thermalize with an increase of temperature OR
- Start with some distribution (e.g. Maxwell-Boltzmann distribution)

$$
\begin{aligned}
& f(v)=\sqrt{\left(\frac{m}{2 \pi k_{B} T}\right)^{3}} 4 \pi v^{2} \exp \left(-\frac{m v^{2}}{2 k_{B} T}\right) \\
& \frac{d N}{N}=f(v) d v \quad v_{p}=\sqrt{\frac{2 k_{B} T}{m}} \\
& \langle v\rangle=\sqrt{\frac{8 k_{B} T}{\pi m}} \quad v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}
\end{aligned}
$$

Molecular dynamics Propagation

Verlet type integration (typical accuracy up to $\mathbf{O}\left(\mathbf{t}^{4}\right)$): Most common in the MD land! Simple to calculate, well preserves the energy along the trajectory (i.e. time-
$\begin{aligned} & \text { reversible) } \\ & \text { As usual, start with Taylor expansion }\end{aligned} \vec{r}_{i+1}=\vec{r}_{i}+\frac{\partial \vec{r}}{\partial t}(\Delta t)+\frac{1}{2} \frac{\partial^{2} \vec{r}}{\partial t^{2}}(\Delta t)^{2}+\frac{1}{6} \frac{\partial^{3} \vec{r}}{\partial t^{3}}(\Delta t)^{3}+\cdots$ or $\vec{r}_{i+1}=\vec{r}_{i}+\vec{v}_{i}(\Delta t)+\frac{1}{2} \vec{a}_{i}(\Delta t)^{2}+\frac{1}{6} \vec{b}_{i}(\Delta t)^{3}+\cdots$ and $\vec{r}_{i-1}=\vec{r}_{i}-\vec{v}_{i}(\Delta t)+\frac{1}{2} \vec{a}_{i}(\Delta t)^{2}-\frac{1}{6} \vec{b}_{i}(\Delta t)^{3}+\cdots$

The original

Verlet
$\vec{r}_{i+1}=\left(2 \vec{r}_{i}-\vec{r}_{i-1}\right)+\vec{a}_{i}(\Delta t)^{2}+\cdots$
$\vec{a}_{i}=\frac{\vec{F}_{i}}{m_{i}}=-\frac{1}{m_{i}} \frac{d V}{d \vec{r}_{i}}$
To initiate $\vec{r}_{-1}=\vec{r}_{0}-\vec{v}_{0} \Delta t$
Notevelocities $(\vec{v}(t)=[\vec{r}(t+\Delta t)-\vec{r}(t-\Delta t)] / 2 \Delta t)$ are not necessary but useful. Also $2 \vec{r}_{i}-\vec{r}_{i-1}$ Is a large difference! Require 9 N variables for storage for $\mathrm{i}=1, \ldots, \mathrm{~N}$ (compact!)

The leap-frog Verlet

$$
\begin{aligned}
& \vec{r}_{i+1}=\vec{r}_{i}+\vec{v}_{i+\frac{1}{2}} \Delta t \\
& \vec{v}_{i+\frac{1}{2}}=\vec{v}_{i-\frac{1}{2}}+\vec{a}_{i} \Delta t \\
& \vec{a}_{i}=\frac{\vec{F}_{i}}{m_{i}}=-\frac{1}{m_{i}} \frac{d V}{d \vec{r}_{i}}
\end{aligned}
$$

To initiate $\vec{r}_{-1}=\vec{r}_{0}-\vec{v}_{0} \Delta t$
Note velocities ($\vec{v}_{i+\frac{1}{2}}$) 'leap' over coordinates half-step. Explicit velocities \vec{v} is a plus. But \vec{r} and are out of phase

The Velocity Verlet

$$
\begin{aligned}
\vec{r}_{i+1} & =\vec{r}_{i}+\vec{v}_{i} \Delta t+\frac{1}{2} \vec{a} \Delta t^{2} \\
\vec{v}_{i+1} & =\vec{v}_{i}+\frac{1}{2}\left\{\vec{a}_{i}+\vec{a}_{i+1}\right\} \Delta t \\
\vec{a}_{i} & =\frac{\vec{F}_{i}}{m_{i}}=-\frac{1}{m_{i}} \frac{d V}{d \vec{r}_{i}}
\end{aligned}
$$

To initiate $\vec{r}_{-1}=\vec{r}_{0}-\vec{v}_{0} \Delta t$ Best numeric al performance and compactstorage make it method pf choice for MD

Molecular dynamics

NVE (microcanonical) ensemble is natural: energy is conserved being redistributed along potential and kinetic partsalong the trajectory
What about NVT (canonical) ensemble? Need thermostat (e.g. Anderson, Nose-Hoover, Berendsen, Langevin etc.) allowing an exchange of the energy with a bath (e.g. solvent, buffer-gas)
Langevin equation of motion

$$
m \frac{d^{2} \vec{r}}{d t^{2}}=-\zeta \frac{\partial \vec{r}}{\partial t}+\vec{F}_{\text {intra }}+\vec{F}_{\text {random }}
$$

Compared to the standard Newton's equation we have new terms:

1) $\zeta \vec{v}$ - friction term with a friction çoefficient $\left(\sim 2 p s^{1}\right)$, which removes energy from the system
2) $\vec{F}_{\text {random }}{ }^{-}$random force associated with the temperature, which balances energy from the system

Thermostat Implementation

Molecular dynamics with coupling to an external bath

H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, ${ }^{\text {a) }}$ and J. R. Haak Themostat Laboratory of Physical Chemistry, The University of Groningen, Nijenborgh 16, 9747 Ag Groningen, The Netherlands
(Received 30 April 1984; accepted 27 June 1984)
In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD. A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling. The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints. The influence of coupling time constants on dynamical variables is evaluated. A leap-frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath.
J. Chem. Phys. 81 (8), 15 October 1984

Rescale velocities by λ and coordinates (or unit cell) by μ, where

$$
\lambda^{2}=1+\gamma \Delta t\left(\frac{T_{0}}{T}-1\right), \mu^{3}=1-\beta \Delta t\left(p_{0}-p\right)
$$

Advanced themostat, barostat, and integratorsee in program manuals

Outline

- Bom-Oppenheimer approximation
- Molec ular mec hanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Molecular dynamics

Lonsdaleite Films with Nanometer Thickness
Alexander G. Kvashnin ${ }^{* \omega^{+/ .}}$and Pavel B. Sorokin ${ }^{\dagger+\omega^{\prime}}$
*Technological Institute of Superhard and Novel Carbon Materials, 7a Centralnaya Street, Troitsk, Moscow 142190, Russian
Federation Federation
${ }^{*}$ Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny 141700, Russian Federation "National Universitv of Science and Technologv "MISIS". Leninskv Avenue 4, Moscow 119049, Russian Federation https://doi.org/10.1021/jz402528q

Simulation of indentation of na nometerthick carbon membranes by using c;assical MD with Tersoff potential (direct simulation of experimental setup)

Molecular dynamics

\author{

Received: 31 July 2022	Revised: 27 August 2022	Accepted: 1 September 2022

}

Aggregate Wiley

Cu -Au nanoparticles produced by the aggregation of gas-phase metal atoms for $\mathbf{C O}$ oxidation

Ilya V. Chepkasov ${ }^{1}$ | Viktor S. Baidyshev ${ }^{2}$ | Artem A. Golubnichiy ${ }^{2}$ | Ivan S. Zamulin ${ }^{2}$ Alexander G. Kvashnin ${ }^{1}$ | Sergey M. Kozlov ${ }^{3} \oplus$

Example 3

EAM potential

Molecular dynamics to simulate the PVD synthesis of Cu-Au nanoalloys through the non-isothermal aggregation of Cu and Au atoms at a 3:1 ratio in the Ar atmosphere to obtain realistic structures of $\mathrm{Cu}-\mathrm{Au}$ nanoparticles

Molec ular dynamics

Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy
Chao Zhang, ${ }^{*+\oplus}$ Dmitry G. Kvashnin, ${ }^{,+,{ }^{+} \text {© }}$ Laure Bourgeois, ${ }^{\S}$ Joseph F. S. Fernando, ${ }^{\dagger} \odot$ Konstantin Firestein, ${ }^{\dagger}$ Pavel B. Sorokin, ${ }^{*, \perp}$ Naoki Fukata, ${ }^{\| \varrho}$ and Dmitri Golberg ${ }^{*,+, \| \odot}$

Examples 4,5

Tersoff many-body potential

Nanoscale, 10, 8099 (2018)

Compressive properties of hollow BN nanoparticles: theoretical modeling and testing using a high-resolution transmission electron microscope

Konstantin L. Firestein, (D) *a,b Dmitry G. Kvashnin, (D) Andrey M. Kovalskii, ${ }^{\text {a }}$ Zakhar I. Popov, (iD ${ }^{\text {a }}$ Pavel B. Sorokin, (D) ${ }^{\text {a,c }}$ Dmitri V. Golberg (D) ${ }^{\text {b,d }}$ and Dmitry V. Shtansky (Da

Molecular dynamics

Examples 6,7

Nanoscale
View Article Online
new oumal IViw kuve

Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties \dagger

Tersoff many-body potential

Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration

Dai-Ming Tang ${ }^{1 *}$, Sergey V. Erohin ${ }^{2}$, Dmitry G. Kvashnin ${ }^{2,3}$, Victor A. Demin ${ }^{3}$, Ovidiu Cretu ${ }^{4}$, Song Jiang ${ }^{5}$, Lili Zhang ${ }^{5}$, Peng-Xiang Hou ${ }^{5}$, Guohai Chen ${ }^{6}$, Don N. Futaba ${ }^{6}$, Yongjia Zheng ${ }^{7}$, Rong Xiang ${ }^{7}$, Xin Zhou ${ }^{1}$, Feng-Chun Hsia ${ }^{1}$, Naoyuki Kawamoto ${ }^{4}$, Masanori Mitome ${ }^{1}$, Yoshihiro Nemoto ${ }^{8}$, Fumihiko Uesugi ${ }^{8}$, Masaki Takeguchi ${ }^{8}$, Shigeo Maruyama ${ }^{7}$, Hui-Ming Cheng ${ }^{5,9,90}$, Yoshio Bando ${ }^{11,12}$, Chang Liu ${ }^{5 *}$, Pavel B. Sorokin ${ }^{2,13 *}$, Dmitri Golberg ${ }^{1,14 *}$

Tang et al., Science 374, 1616-1620 (2021)

Application	of	classical
potentials	and	MD
simulations	to	describe
radiation a	c	of
structure	of	carbon

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interac tion
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Extend MD Coarse graining

Skoltech
Aim is to simulate the behavior of complex systems using their coarse-grained (simplified) representation.
Coarse-grained models are widely used for molecular modeling of biomolecules at various granula rity levels.
Idea is to simulate coarse grained model, then get back to all-atom description to refine local geometry

Multiscale coarse-grained (CG)

All-atom representation

United-atom representation

Bisphenol-A polycarbonate chemical structure and the corresponding CG A

Statistical mechanics

Themodynamics variables: volume (V), pressure (p), temperature (T). Number of particles (N), energy (E), chemic al potential (μ)
Statistical mechanics: connection between properties of a microscopic system and a macrosc opic sample
Ensemble: collection of microscopic states consistent with thermodynamic boundary conditions; defined by 3 va riables (NVT) or (NVE) or (NPT) or ($\mu \mathrm{VT}$)
Boltzmann probability: relative probability to be in a state with an energy E at a temperature T and is proportional to $\exp \left(-E / k_{B} T\right)$

Partition function is a key quantity in statistical mechanics, a normalization factor for the Boltzmann probability distribution:
$Q=\sum_{i}^{\infty} e^{-E_{i} / k_{B} T}=\int e^{-E(\vec{r}, \vec{p}) / k_{B} T} d \vec{r} d \vec{p}$

Everything can be expressed through Q, e.g., for a canonical ensemble (NVT)

- Intemal energy

$$
U=k_{B} T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V}
$$

- Enthalpy

$$
H=U+P V=k_{B} T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V}+k_{B} T V\left(\frac{\partial \ln Q}{\partial V}\right)_{T}
$$

- Entropy

$$
\begin{aligned}
S=\frac{U-A}{T} & =k_{B} T^{2}\left(\frac{\partial \ln Q}{\partial T}\right)_{V}+k_{B} T \ln Q \\
G=H-T S & =k_{B} T V\left(\frac{\partial \ln Q}{\partial V}\right)_{T}-k_{B} T \ln Q
\end{aligned}
$$

- Gibbs free energy
- Helmholtz free energy

$$
A=U-T S=-k_{B} T \ln Q
$$

Thermodynamic ensembles

Microcanonical (NVE): Newtonian system ($\mathrm{N}=\mathrm{const}$) in box ($\mathrm{V}=\mathrm{const}$) with elastic walls (or PBC)

Canonical (NVT): Newtonian system ($\mathrm{N}=\mathrm{const}$) in box ($\mathrm{V}=\mathrm{const}$) with non-elastic walls (walls a re equilibrated with $\mathrm{T}=$ const - themostat)
Isothermal-isobaric (NPT): Newtonian system ($\mathrm{N}=\mathrm{const}$) in box with varying volume (keeping P = const - barostat) and non-elastic walls (keeping $T=$ const - themostat)
Grand-canonical ($\mu \mathrm{V}$): Open system (number of particles is not conserved but their energy in the resenvoir is fixed at μ

Constants in different ensembles, and corresponding equilibrium states

N	P	V	T	E	μ	Acronym	Equilibrium	Name
\times		\times	\times			$N V T$	A has minimum	Canonical
\times		\times		\times		$N V E$	S has maximum	Micro-canonical
\times	\times	\times	\times			$N P T$	G has minimum	Isothermal-isobaric
		\times	\times		\times	$V E \mu$	$(P V)$ has maximum	Grand canonical

Statistical sampling

Ergodicity: Time-average of a property can be replaces by a suitable average over collection of possible mic rosc opic states (ensemble average)
Given a potential energy surface $E_{p}(r)$, what are the possible modeling route for generating ensembles?

Differences between Monte Carlo and molecular dynamics methods
Molecular dynamics (MD): propagate Newton's

Property	MC	MD
Basic information needed	Energy	Gradient
Particles moved in each step	One	All
Coordinates	Any	Cartesian
Constraints	Easy	Difficult
Atomic velocities	No	Yes
Time dimension	No	Yes
Deterministic	No	(Yes)
Sampling	Non-physical	Physical
Natural ensemble	$N V T$	$N V E$

Outline

- Bom-Oppenheimer approximation
- Molec ular mechanics
- Potentials of interatomic interaction
- Energy contributions
- Force fields
- ML potentials
- Molec ular dynamics
- Examples
- Extend molec ular dynamics
- Monte-Carlo

Replace strategy "first pick, then weight" with "first weight, the pick"
by penalizing states with high energy by a Boltzmann factor $\exp \left(-\Delta E / k_{B} T\right)$

How?

Say on (i-1) step, the energy of accepted configuration is $\mathrm{E}_{\mathrm{i}-1}$
on $i^{\text {th }}$ step, the energy of new configuration is E_{i}
Case1: $E_{i}<\mathrm{E}_{\mathrm{i}}-1$: Good! We are going lower, accepti
Case2: $E_{i}>E_{i}-1$: We are going higher, calculate $\exp \left(-\Delta E / k_{B} T\right)=\exp \left(-\left(E_{i}<E_{i}-1\right) / k_{B} T\right)$, pick a random number ξ from $[0,1]$
If $\xi>\exp \left(-\Delta E / k_{B} T\right)$ reject it If $\xi<\exp \left(-\Delta E / k_{B} T\right)$ accept it

Metropolis (+Fermi, Ulam, von Neuman)

Monte-Caro (1952): "walks" through phase space (Markov chain of states) visiting each state with proper probability (in theanfinite time limit)

$$
\text { Generate trial configuration } \mathbf{q}_{\mathbf{1}} \text {, its energy }
$$

$$
\mathbf{E}_{\mathbf{1}}=\mathbf{E}\left(\mathbf{q}_{1}\right) \text { a nd store the desired property }
$$

$A_{1}=A\left(g_{1}\right)$
For $\mathrm{i}=2, \ldots, \mathrm{M}$ do
Perturb the system, get new configurations
Calculate energy of $\mathbf{q}_{\mathbf{i}}: \mathbf{E}_{\mathbf{i}}=\mathbf{E}\left(\mathbf{q}_{\mathbf{i}}\right)$
Test \mathbf{E}_{i} vs $\mathrm{E}_{\mathbf{i}-1}$ for acceptance
If rejected, disc a rd $\mathbf{q}_{\mathbf{i}}$
If accepted, calculate a nd store $\mathbf{A}_{\mathbf{i}}=\mathbf{A}\left(\mathbf{q}_{\mathbf{i}}\right)$

$$
\text { If } \mathrm{i}<\mathrm{M}
$$

Calculate $\langle A(M)\rangle=\frac{1}{M} \sum_{i=1}^{M} A_{i}$

Fractuct
annatamminn

1) The natural Monte-Carlo ensemble is (NVT)

2) The "Devil is in details": the art of running an MC calculation lies in defining the perturbation step(s)
If the steps are very small, then volume of phase space sampled will inc rease only slowly over time, and it is computationally expensive. If the steps are too large, then the rejection rate will grow so high that aga in resources will be wasted by an ineffic ient phase space.

3) Monitoring convergence of $\langle A(M)>$ and possibly $\mathbb{E}(M)>$ with M is necessary

This will tell you a lot about convergence rate and possible transitions to a different PES valley
4) Multiple MC variations were developed, including different ensembles, annealing (varying T) algorithms, simulating timescales. For example, (NPT) isothemal-isobaric ensemble, G (Gibbs free energy) at min (frequent in experimental conditions)

$$
\Delta E \rightarrow \Delta E+P \Delta V-N k_{B} T \ln (1+\Delta V / V)
$$

Example of PES

