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Born-Oppenheimer approximation
• Nuclei are much heavier than electrons
• Nuclei move much slower than electrons
• We can decouple electronic and nuclear

motions



Born-Oppenheimer approximation
• Nuclei are much heavier than electrons
• Nuclei move much slower than electrons
• We can decouple electronic and nuclear

motions

�𝐻𝐻 = �𝑇𝑇𝑁𝑁 𝑅𝑅 + �𝑇𝑇𝑒𝑒 𝑟𝑟 + �𝑉𝑉𝑁𝑁𝑁𝑁 𝑅𝑅 + �𝑉𝑉𝑒𝑒𝑁𝑁 𝑟𝑟,𝑅𝑅 + �𝑉𝑉𝑒𝑒𝑒𝑒 𝑟𝑟
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Hamiltonian
�𝐻𝐻 = �𝐻𝐻1 𝑟𝑟 + �𝐻𝐻2 𝑅𝑅

Separable
Hamiltonian

𝜓𝜓 𝑟𝑟,𝑅𝑅 = 𝜓𝜓1 𝑟𝑟 𝜓𝜓2 𝑅𝑅�𝐻𝐻𝜓𝜓 𝑟𝑟,𝑅𝑅 = 𝐸𝐸𝜓𝜓 𝑟𝑟,𝑅𝑅
𝐸𝐸 = 𝐸𝐸1 + 𝐸𝐸2

Approximately
Separable!

ΨT 𝑟𝑟,𝑅𝑅 = Ψ𝑒𝑒 𝑟𝑟,𝑅𝑅 Ψ𝑁𝑁 𝑅𝑅
For this case

�𝐻𝐻Ψ𝑒𝑒 𝑟𝑟,𝑅𝑅 Ψ𝑁𝑁 𝑅𝑅 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡Ψ𝑒𝑒 𝑟𝑟,𝑅𝑅 Ψ𝑁𝑁 𝑅𝑅



Born-Oppenheimer approximation

�𝐻𝐻𝑒𝑒 = �𝑇𝑇𝑒𝑒 𝑟𝑟 + �𝑉𝑉𝑒𝑒𝑁𝑁 𝑟𝑟,𝑅𝑅 + �𝑉𝑉𝑒𝑒𝑒𝑒 𝑟𝑟
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Electronic problem

The nuclei move in a potential created by the electrons

−�
𝑖𝑖

ℏ2

2𝑚𝑚
∇𝑖𝑖2 +

1
4𝜋𝜋

�
𝑖𝑖,𝑛𝑛

𝑍𝑍𝑛𝑛𝑒𝑒2

𝑟𝑟𝑖𝑖 − 𝑅𝑅𝑛𝑛
+

1
4𝜋𝜋

1
2
�
𝑖𝑖≠𝑗𝑗

𝑒𝑒2

𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗
Ψ𝑒𝑒 𝑟𝑟,𝑅𝑅 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡Ψ𝑒𝑒 𝑟𝑟,𝑅𝑅

Nuclei problem �𝑇𝑇𝑁𝑁 𝑅𝑅 + �𝐸𝐸𝑒𝑒 𝑅𝑅 + �𝑉𝑉𝑁𝑁𝑁𝑁 𝑅𝑅 Ψ𝑁𝑁 𝑅𝑅 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡Ψ𝑁𝑁 𝑅𝑅

�𝐻𝐻𝑁𝑁Ψ𝑁𝑁 𝑅𝑅 = −�
𝑛𝑛

ℏ2

2𝑀𝑀
∇𝑛𝑛2 + 𝐸𝐸𝑒𝑒 𝑅𝑅 +

1
4𝜋𝜋

1
2
�
𝑛𝑛≠𝑚𝑚

𝑍𝑍𝑛𝑛𝑍𝑍𝑚𝑚𝑒𝑒2

𝑅𝑅𝑛𝑛 − 𝑅𝑅𝑚𝑚
Ψ𝑁𝑁 𝑅𝑅 = 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡Ψ𝑒𝑒 𝑅𝑅
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When molecular mechanics works
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“exactly” in Born-Oppenheimer approximation
Molecular Mechanics is based on several assumptions:

• It treats the electrons around a nucleus and the nucleus itself as a perfect sphere.
• The bonds between molecules are treated as springs.
• Potential functions rely on experimental parameters such as force constants and equilibrium volumes.
• The potential energy function is the sum of individual functions for bond stretching, angle bending,

torsional energies, and non-bonding interactions.

So,

• We are not interested in electronic properties
• Electronic state remains unchanged
• Electronic dynamics is irrelevant

Think about examples when MM does not work

Challenge is to approximate exact Potential Energy Surface (PES) by interatomic potentials
Grand challenge is to make such potentials transferable

Think about examples when transferability is hardly possible



Molecular mechanics

9

Molecular Mechanics is a computational method that computes the potential energy
surface for a particular arrangement of atoms using potential functions that are derived using
classical physics.

Molecular Mechanics methods use classical type models (no quantum mechanics) to predict
the energy of a system as a function of atomic coordinates, i.e. approximate PES.

Can be used to:
• Optimize geometry (of minima or transition state)
• Calculate relative energies between conformers

or polymorphs



Molecular mechanics

10

Molecular Mechanics is a computational method that computes the potential energy
surface for a particular arrangement of atoms using potential functions that are derived using
classical physics.
Molecular Mechanics methods use classical type models (no quantum mechanics) to predict
the energy of a system as a function of atomic coordinates, i.e. approximate PES.
Can be used to:
• Optimize geometry (of minima or transition state)
• Calculate relative energies between conformers or polymorphs

But mostly used to:
• Run molecular dynamics
• Sample PES
• Large-scale simulations

Why can we do it

• Chemical bonding is local
• Number of local structural patterns is limited
• Nonlocal interactions are pairwise


Microsoft Game DVR

3D molecular visualisation - Water turning into ice - YouTube, группа Нужное — Яндекс Браузер
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Potentials

12

Interatomic potentials are mathematical functions to calculate the potential energy of a
system of atoms with given positions in space

Interatomic potentials can be divided into several types

• Pair potentials
• Force fields
• ML potentials

Examples of quantitative properties and qualitative phenomena that are explored with
interatomic potentials include
lattice parameters, surface energies, interfacial energies, adsorption, cohesion, thermal
expansion, and elastic and plastic material behavior, as well as chemical reactions

Sci. Rep. 6, 38974 (2016)

Langmuir 10, 26, 2, 1165-1171 (2010)



Potentials
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Pair potential
is a function that describes the potential energy of two interacting objects solely as a function
of the distance between them
Mostly used for gases, closely packed lattices (metals, ionic crystals), but not for covalent
compounds

Lennard-Jones potential

𝑉𝑉𝐿𝐿𝐿𝐿 = 4𝜀𝜀
𝜎𝜎
𝑟𝑟

12
−

𝜎𝜎
𝑟𝑟

6 repulsion

Morse potential

𝑉𝑉𝑀𝑀 = 𝐷𝐷𝑒𝑒 1 − 𝑒𝑒−𝛼𝛼 𝑟𝑟−𝑟𝑟𝑒𝑒 2

𝜎𝜎 is the distance at which the potential energy
is 0
𝜀𝜀 is the depth of potential well

𝐷𝐷𝑒𝑒 is the depth of potential well, 𝛼𝛼 controls the width of the potential

𝛼𝛼 =
𝑘𝑘𝑒𝑒

2𝐷𝐷3

𝑘𝑘𝑒𝑒 is the force constant
at the minimum of the
well
(stiffness of the bond)

attractio
n

WHY



Potentials
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Embedded atom model
EAM is an approximation describing the energy between atoms and is a type of interatomic potential
The energy is a function of a sum of functions of the separation between an atom and its neighbors

𝐸𝐸𝑖𝑖 = 𝐹𝐹𝛼𝛼 �
𝑗𝑗≠𝑖𝑖

𝜌𝜌𝛽𝛽 𝑟𝑟𝑖𝑖𝑗𝑗 +
1
2
�
𝑗𝑗≠𝑖𝑖

𝜙𝜙𝛼𝛼𝛽𝛽 𝑟𝑟𝑖𝑖𝑗𝑗

Embedding 
energy Electron cloud 

contribution 

Pair interaction

For a binary alloy, the EAM potential requires seven functions:
three pair-wise interactions (A-A, A-B, B-B),
two embedding functions, and
two electron cloud contribution functions.
Generally, these functions are provided in a tabularized format and interpolated by cubic splines

𝑟𝑟𝑖𝑖𝑗𝑗 is the distance between atoms i and j, 𝜙𝜙𝛼𝛼𝛽𝛽 is a pair-wise potential function, 𝜌𝜌𝛽𝛽 is the contribution
to the electron charge density from atom j of type β at the location of atom i, F is an embedding
function that represents the energy required to place atom i of type α into the electron cloud



Potentials
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Force fields
a force field is a computational method that is used to estimate the forces between atoms
within molecules, between molecules, and between atoms in solids

The parameters for a chosen energy function may be derived from experiments in physics
and chemistry, calculations in quantum mechanics, or both

General contributions
• Bonding interactions = stretching + bending + torsion
• Non-bonding interactions = van der Waals + electrostatic
• Cross-terms bend

𝐸𝐸𝐹𝐹𝐹𝐹 = 𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟 + 𝐸𝐸𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 + 𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 + 𝐸𝐸𝑣𝑣𝑏𝑏𝑣𝑣 + 𝐸𝐸𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑐𝑐𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠

AMBER (Assisted Model Building and Energy
Refinement)
CFF (Consistent Force Field)
CHARMM (Chemistry at HARvard Molecular
Mechanics)
IFF (Interface Force Field)
MMFF (Merck Molecular Force Field)
OPLS (Optimized Potential for Liquid Simulations
UFF (Universal Force Field)
EVB (Empirical valence bond)
ReaxFF – reactive force field (interatomic potential)

ML potentials
Will be discussed later 

and in a separate lecture

Mostly used force fields
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The stretch energy
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Start with Taylor expansion of energy E(R) near the minimum

𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟 𝑅𝑅𝑖𝑖𝑗𝑗 − 𝑅𝑅0
𝑖𝑖𝑗𝑗 = 𝐸𝐸 0 +

𝑑𝑑𝐸𝐸
𝑑𝑑𝑅𝑅

𝑅𝑅𝑖𝑖𝑗𝑗 − 𝑅𝑅0
𝑖𝑖𝑗𝑗 +

1
2
𝑑𝑑2𝐸𝐸
𝑑𝑑𝑅𝑅2

𝑅𝑅𝑖𝑖𝑗𝑗 − 𝑅𝑅0
𝑖𝑖𝑗𝑗 2

Can be set to 0
Vanishes at 
minimum

𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟 Δ𝑅𝑅𝑖𝑖𝑗𝑗 = 𝑘𝑘2
𝑖𝑖𝑗𝑗 Δ𝑅𝑅𝑖𝑖𝑗𝑗 2 + 𝑘𝑘3

𝑖𝑖𝑗𝑗 Δ𝑅𝑅𝑖𝑖𝑗𝑗 3 + 𝑘𝑘4
𝑖𝑖𝑗𝑗 Δ𝑅𝑅𝑖𝑖𝑗𝑗 4 + ⋯

P2 
term

P4 
term

Alternative forms include Morse potential
𝐸𝐸𝑀𝑀 Δ𝑅𝑅𝑖𝑖𝑗𝑗 = 𝐷𝐷𝑒𝑒 1 − 𝑒𝑒−𝛼𝛼Δ𝑅𝑅𝑖𝑖𝑖𝑖

2

However, numerically friendly polynomial
expansion is usually used instead of Morse
potential
Every pair of atoms (i,j) requires at least 2
parameters:

𝑘𝑘2
𝑖𝑖𝑗𝑗 and 𝑅𝑅0

𝑖𝑖𝑗𝑗



The bending energy
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𝐸𝐸𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 − 𝜃𝜃0
𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑘𝑘2

𝑖𝑖𝑗𝑗𝑖𝑖 𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖 − 𝜃𝜃0
𝑖𝑖𝑗𝑗𝑖𝑖 2

i

j

k
𝜃𝜃𝑖𝑖𝑗𝑗𝑖𝑖

Why bending change energy

sp3

Must be accurate in region of
few kT above the minimum
(accessible conformational
space)
Problems with 𝜃𝜃 =180°, multiple
minima, out-of-plane bending

Every triple of atoms (i,j,k)
requires 2 parameters:

𝑘𝑘2
𝑖𝑖𝑗𝑗 and 𝜃𝜃0

𝑖𝑖𝑗𝑗𝑖𝑖



The torsion energy
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Dihedral angle is
defined as
signed angle
between ijk and
jkl planes

• Dihedral angles are usually flexible and
correspond to large-amplitude motions

• Energy scale is 1-2 orders of magnitude smaller
than for stretching and bending

• Includes non-bonding interactions
• Every quadruplet of atoms (i,j,k,l) requires a set of

parameters:

𝑉𝑉1
𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 ,𝑉𝑉2

𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 ,𝑉𝑉3
𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 , …

j

i

k l

Torsion energy depends on the dihedral angle between quadruplets of atoms

ω

𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 𝜔𝜔𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 =
1
2
𝑉𝑉1
𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 1 + cos 𝜔𝜔𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 +

+ 1
2
𝑉𝑉2
𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 1 − cos 2𝜔𝜔𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 +

+
1
2
𝑉𝑉3
𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 1 + cos 3𝜔𝜔𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒



Impropers
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l

An improper torsion angle is one where the torsion angle is not defined by four angles
connected sequentially. It defines improper interactions between quadruplets of atoms

𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖 𝜙𝜙𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 = 𝑘𝑘𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 𝜙𝜙𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒 − 𝜙𝜙0
2

Proper torsion
angle

Improper torsion
angle

• Correspond to small-amplitude motions, so the
harmonic potential is good enough

• Every planar quadruplet of atoms (i,j,k,l) requires
only a single parameter:

𝑘𝑘𝑖𝑖𝑗𝑗𝑖𝑖𝑒𝑒

Proper torsion
angle

Improper torsion
angle



The van der Waals energy
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l

• Accounts for all non-electrostatic interaction between non-
bonded atoms

• Repulsive at short distance due to steric interaction (Pauli
exchange)

• Attractive at large distances due to dispersion interaction,
induced dipoles

• The Lennard-Jones (LJ) potential is commonly used
• For LJ potential every pair of atoms (A,B) requires 2 parameters: ε

and σ
• To minimize number of parameters one uses
• Usually, vdW interactions are excluded between bonded atoms

𝑉𝑉𝐿𝐿𝐿𝐿 = 4𝜀𝜀
𝜎𝜎
𝑟𝑟

12
−

𝜎𝜎
𝑟𝑟

6

𝜀𝜀𝐴𝐴𝐴𝐴 = 𝜀𝜀𝐴𝐴𝐴𝐴𝜀𝜀𝐴𝐴𝐴𝐴 1/2

Some other forms
The Buckingham potential

𝐸𝐸𝑏𝑏𝑏𝑏𝑐𝑐𝑖𝑖 𝑟𝑟 = 𝜀𝜀
6

𝛼𝛼 − 6
𝑒𝑒𝛼𝛼 1−𝑟𝑟/𝑅𝑅0 −

𝛼𝛼
𝛼𝛼 − 6

𝑅𝑅0
𝑟𝑟

6

Hydrogen bonding potential

𝐸𝐸𝐻𝐻−𝑏𝑏𝑡𝑡𝑛𝑛𝑏𝑏 𝑟𝑟 = 𝜀𝜀 5
𝑅𝑅0
𝑟𝑟

12

− 6
𝑅𝑅0
𝑟𝑟

10



Cross-terms
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𝐸𝐸𝐹𝐹𝐹𝐹 = 𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟 + 𝐸𝐸𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 + 𝐸𝐸𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 + 𝐸𝐸𝑣𝑣𝑏𝑏𝑣𝑣 + 𝐸𝐸𝑒𝑒𝑒𝑒 + 𝐸𝐸𝑐𝑐𝑟𝑟𝑡𝑡𝑠𝑠𝑠𝑠

The various terms in the total energy are not independent, and cross-terms should be
considered

𝑢𝑢𝑖𝑖 �⃗�𝑥 = 𝑢𝑢𝑖𝑖 0 + �
𝑗𝑗

𝑥𝑥𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗 0

+ �
𝑖𝑖≤𝑗𝑗

�
𝑗𝑗

𝑥𝑥𝑗𝑗𝑥𝑥𝑖𝑖
𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝜕𝜕𝑥𝑥𝑖𝑖 0

For example, stretching-
bending: 𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟/𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑅𝑅0𝐴𝐴𝐴𝐴 − 𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑅𝑅0𝐴𝐴𝐴𝐴

Other terms

𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟/𝑠𝑠𝑡𝑡𝑟𝑟 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑅𝑅0𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑅𝑅0𝐴𝐴𝐴𝐴

𝐸𝐸𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏/𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴

𝐸𝐸𝑠𝑠𝑡𝑡𝑟𝑟/𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝐴𝐴𝐴𝐴 − 𝑅𝑅0𝐴𝐴𝐴𝐴 cos 𝑛𝑛𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐸𝐸𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏/𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴 cos 𝑛𝑛𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐸𝐸 ⁄𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 𝑡𝑡𝑡𝑡𝑟𝑟𝑠𝑠/𝑏𝑏𝑒𝑒𝑛𝑛𝑏𝑏 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃𝐴𝐴𝐴𝐴𝐴𝐴 − 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴 cos 𝑛𝑛𝜔𝜔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Cross-terms are rarely used because
of problems with their parametrization
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Illustrate all elements of a force field using this molecule:



MM2 force field
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MM2 force field
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• Each of the 71 atom types has two van der Waals parameters, and , giving 142 parameters
• There are approximately 1/2×30×30 = 450 different Estr terms, each requiring at least two parameters

and , for a total of at least 900 parameters
• There are approximately 1/2×30×30×30 = 13500 different Ebend terms, each requiring at least two

parameters and , for a total of at least 27000 parameters
• There are approximately 1/2×30×30×30×30 = 405000 different Etors terms, each requiring at least three

parameters , for a total of at least 1215000 parameters
• Cross-terms may add another million possible parameters

𝑅𝑅0𝐴𝐴 𝜀𝜀𝐴𝐴

𝑅𝑅0𝐴𝐴𝐴𝐴 𝑘𝑘𝐴𝐴𝐴𝐴

𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 𝜃𝜃0𝐴𝐴𝐴𝐴𝐴𝐴

𝑉𝑉1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑉𝑉2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑉𝑉3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴



Reduce number of parameters
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• Assign atomic charges (e.g. from DFT) instead of fitting them
• Use element-wise LJ parametrization instead of pair-wise
• Group atom types into atom classes for bonded interactions
• Omit unnecessary dihedral and minimize number of impropers



Parametrization
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How to do it? Define functional form, objective function, and fit parameters

𝐸𝐸𝑟𝑟𝑟𝑟𝐹𝐹 𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑒𝑒𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝 = �
𝑖𝑖

𝑏𝑏𝑑𝑑𝑡𝑡𝑑𝑑

𝑤𝑤𝑒𝑒𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑖𝑖 ⋅ 𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒 𝑣𝑣𝑝𝑝𝑣𝑣𝑢𝑢𝑒𝑒 − 𝑟𝑟𝑝𝑝𝑣𝑣𝑟𝑟𝑢𝑢𝑣𝑣𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 𝑣𝑣𝑝𝑝𝑣𝑣𝑢𝑢𝑒𝑒 𝑖𝑖
2

1) How to choose functional form:
• The choice is not unique and depends on material, scales, and goals
• Linear optimization is preferable
• Systematic improvement of accuracy is challenging for non-ML potentials

2) What are reference values:
• Experimental data (vibrational frequencies, X-ray structures, heats of formation) were

commonly used in past, but they are often incomplete and have large error bars
(especially lab-to-lab and batch-to-batch variations

• Today high-throughput DFT calculations are used, including semi-automated
parametrization routines (e.g. AMBER-DFT or ML-potentials)

3) How to define and generate fitting (training) dataset:
• The dataset must be representative (cover required part of PES with proper weights)

and suitable for fitting (confidence intervals for all parameters must be reasonable,
parameter dependencies must be resolved)

Parametrization is a difficult process requiring good knowledge of underlying physical 
phenomena/interactions, chemical intuition, use of experimental data and utilization of electronic 
structure codes



Various types of potentials

29

Different classes of materials require different approaches:
• Simple metals (Al – yes, Pu – no) – embedded-atom (EAM)
• Ionic solids (NaCl ) – embedded-ion model
• Complex bonding – charge optimized many body potential (COMB)
• Tetrahedral semiconductors/insulators (Si, SiOTetrahedral semiconductors/insulators (Si,

SiOTetrahedral semiconductors/insulators (Si, SiO2) – Tersoff potentials
• Water – TIP3/4/5P models
• π-conjugated molecules – MM3 force field + Huckel model
• Biomolecules – well parameterized AMBER, CHARMM, GROMOS with residue-based

parametrization (proteins) and united atoms
• Attempts to make universal force field for molecules – OPLS, UFF, DREIDING
• Polarizable force– DRUDE, AMOEBA
• Chemical reactions – reactive force (ReaxFF)
Different states of the same molecule require different values of parameters

Anion, cation, excited singlet S1, etc

Fitting-friendly parametrization (allow for black-box fitting and systematic improvement by ML
approaches): 𝐸𝐸 = �

𝑖𝑖

𝐸𝐸 local geometry of ith atom + 𝐸𝐸𝑒𝑒𝑡𝑡𝑛𝑛𝑙𝑙−𝑟𝑟𝑑𝑑𝑛𝑛𝑙𝑙𝑒𝑒



Computational efficiency
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• Make no mistake: molecular mechanics is MUCH faster compared to any
electronic structure model based on quantum mechanics!

• Evaluation of the non-bonded energy is the most time-consuming step
growing ~N2

Can be reduced to ~N using cut-off distances or advanced summation
techniques



Benchmarks by LAMMPS

31



Other facts
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• Blind use of empirical potentials is very dangerous and can lead to errors.

• Well–parameterized potentials can give more accurate geometries and

relative energies than low-level QM methods

• Often FF are bound to specific MD code (AMBER, CHARMM etc.) so that

parameters are not easily transferable between codes.



Typical workflow
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1) Choose the functional form of empirical potentials:
• define atom types;
• decide on type of potentials and number of parameters (e.g. not all

dihedral angles are usually needed, parametrization of LJ interactions can
be chosen element-wise or pair-wise)

• which parameters are fitted, and which are assigned (e.g. often it is bad
idea to fit charges in force fields, for intramolecular dynamics LJ
parameters can be assigned from generic tables)

2) Force fields require topology – define it
3) Provide initial parametrization

(from generic force field like OPLS or from DFT calculations)
4) Parametrize
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ML as interpolation
… data driven and multidimensional

Problem Given Eqm(X), interpolate with E(X)

Issue No transferability w.r.t. the number of atoms

Solution Use locality! An atom interacts with only 10-100 
neighbor atoms

[Adopted from Shapeev et al.]
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Why is this important?
A dream of computational materials scientist

femtoseconds

nanoseconds

seconds

days

years

1 Å 1 nm 1 µm 1 mm 1 m 1 km

Quantum 
mechanics

Atomistic 
mechanics

F = ma

Mesoscale 
mechanics

Continuum 
mechanics

Engineering 
design
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Molecular modeling
~40% of supercomputing 
time is spent on Molecular 
Modeling

[Adopted from nersc.gov]
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Molecular dynamics scales
Number of tasks is limited by the available computational resources 
depending on the number of atoms in the system.

[D. Perez, LANL]

The goal is to increase timescale 
of simulations using the same 
number of computational 
resources
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Machine learning ideology
1. Choose a (machine-learning) model E = E(X), X is atomic configuration

2. We want to minimize |E – Eqm|
so we 

Generate data: x(1), x(2), …; Eqm(x(1)), Eqm(x(2)), …; fqm(x(1)), fqm(x(2)), …

Minimize on data: �
𝒊𝒊

𝑬𝑬 𝒙𝒙 𝒊𝒊 − 𝑬𝑬𝒒𝒒𝒒𝒒 𝒙𝒙 𝒊𝒊 𝟐𝟐
+ 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 + ⋯

But what if sampling the right x(i) is a part of the 
problem?
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Active learning / learning 
on-the-fly A crucial and often time-consuming part is the

construction of the training set.
Active learning is a machine-learning technique allowing one to
entrust these training set refinement iterations to a computer, thus
completely automating the training set construction.

Podryabinkin, Shapeev Comp. Mat. Sci. 140, 171-180
(2017)

The no-learning and classical LOTF MD are not completely
reliable: on average every 15 ps the no-learning MD fails, i.e.,
escapes into an unphysical region in the phase space.
The classical LOTF ten times more reliable (failure time of 150 ps)
at the expense of extra 1500 QM calculations.
The active LOTF makes MD completely reliable as measured over
the first 0.5 µs of simulation time.
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Active learning
Classic MD AIMD Hybrid MD Active 

learning

+ Fast
– Qualitative 
accuracy only

+ Accurate
– Time 
consuming

+ Fast
+ Accurate (hopefully)

+ Fast
+ Accurate (for sure)
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MLIPs
Nowadays there are several types of machine learning interatomic potentials (MLIPs) are known 
and used 

GAP
Gaussian 
Approximation 
Potentials

A 2D illustration of the
atomic neighbor
density function used
in GAP

NNP
Neural Network 

Potential 

MTP
Moment Tensor 

Potential

Behler et al. Shapeev et al.Bartók et al.
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Comparison of MLIPs

A comprehensive DFT data set was 
generated for six elements - Li, Mo, Ni, Cu, 
Si, and Ge

Test error versus computational cost for the Mo system.
The gray dashed line indicates an approximate Pareto
front.
This Pareto frontier represents an optimal trade-off
between accuracy and computational cost.

Δ gauge comparison provides quantitative estimate of
deviation between the EOS curve from each ML-IAP with
that of DFT.
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MTP Applicatio
ns

Boron structure prediction challenges:
• A lot of allotropes
• Some allotropes has more than 100 atoms

(impossible for DFT)
• Small energy/atom difference between structures

with PES minima
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MTP Applicatio
ns

Hardness is a very difficult characteristic for
atomistic simulations
Simulation of nanoindentation of materials
by using MTP via direct measurements of
forces and imprints from the indentor (direct
simulation of experimental setup)
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Molecular dynamics
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Basic principles

• Solve Newton’s equation of motion for N classical particles
(3N coupled equations)

• For now, let limit our selves by natural NVE ensemble
• The force depends on positions only (not velocities)
• Each particle is allowed to interact simultaneously with every

other particle and can experience an additional external
potential

• A single point in a 6N-dimensional phase space (p,r)
represents our dynamical system

�⃗�𝐹 = 𝑚𝑚�⃗�𝑝

E𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖=1

𝑁𝑁
1
2
𝑚𝑚�⃗�𝑣𝑖𝑖2 + 𝑉𝑉 𝑟𝑟

−
𝑑𝑑𝑉𝑉
𝑑𝑑𝑟𝑟

= 𝑚𝑚
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑝𝑝2

Ensemble of possible structures
of a tryptophan-glycine–silver
cluster cation complex,
obtained by superimposing
the configurations sampled
from MD trajectory simulation
Phys Rev Lett 101, 213001
(2008)

Our dimensionality: N particles, 3N-dim
vectors
• Coordinates
• Velocities
• Momenta
• Accelerations
• Potential energy
• Kinetic energy
• Forces
• Particle masses

𝑟𝑟 = �⃗�𝑞 = 𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1, 𝑥𝑥2, …
𝑣𝑣 = ⁄𝑑𝑑𝑟𝑟 𝑑𝑑𝑝𝑝
�⃗�𝑝 = 𝑚𝑚�⃗�𝑣
�⃗�𝑝 = ⁄𝑑𝑑�⃗�𝑣 𝑑𝑑𝑝𝑝
𝑉𝑉 𝑟𝑟
𝐾𝐾 �⃗�𝑝 = �

1
2𝑚𝑚�⃗�𝑣𝑖𝑖

2

�⃗�𝐹 �⃗�𝑝 = ⁄𝑑𝑑𝑉𝑉 𝑑𝑑𝑟𝑟
𝑚𝑚𝑖𝑖
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• Initialize: select position and velocities
• Propagate: compute all forces, and then

determine new positions
• Equilibrate: let the system reach equilibrium

for a given thermodynamic ensemble (NVE,
NPT etc.)

• Sample (average): accumulate long
enough trajectory and calculate quantities
of interest

Typical algorithm
Algorithm

Give particles initial positions
, velocities𝑟𝑟0 = 𝑟𝑟 𝑝𝑝 = 0 𝑣𝑣0 = 𝑣𝑣 𝑝𝑝 = 0

Calculate and store energy
and other quantities at 𝑝𝑝 = 0

𝐸𝐸0 = 𝐸𝐸 𝑝𝑝 = 0

Choose short timestep     (typical 0,1-1 fs)Δ𝑝𝑝

Set forces         and accelerations𝐹𝐹 𝑝𝑝 𝑝𝑝 𝑝𝑝

Move particles,
i.e. compute                and𝑟𝑟 𝑝𝑝 + Δ𝑝𝑝 𝑣𝑣 𝑝𝑝 + Δ𝑝𝑝

Move time forward 𝑝𝑝 = 𝑝𝑝 + Δ𝑝𝑝

Calculate and store energy
and other quantities at t

𝐸𝐸 𝑝𝑝

Repeat

Phys. Chem. Chem. Phys., 13(3), 1214–1221 (2010)
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Selecting initial positions:
• Interconnection topology should agree with chemical structure
• Avoid short distances – huge energy penalty (~1/r12 for Lenard-Jones)
• Avoid highly non-equilibrium conditions
Selecting initial velocities
• Start with v=0, then allow to equilibrate/thermalize with an increase of

temperature OR
• Start with some distribution (e.g. Maxwell-Boltzmann distribution)

Initialization

𝑟𝑟 𝑣𝑣 =
𝑚𝑚

2𝜋𝜋𝑘𝑘𝐴𝐴𝑇𝑇

3

4𝜋𝜋𝑣𝑣2 exp −
𝑚𝑚𝑣𝑣2

2𝑘𝑘𝐴𝐴𝑇𝑇

𝑑𝑑𝑑𝑑
𝑑𝑑

= 𝑟𝑟 𝑣𝑣 𝑑𝑑𝑣𝑣 𝑣𝑣𝑖𝑖 =
2𝑘𝑘𝐴𝐴𝑇𝑇
𝑚𝑚

𝑣𝑣 =
8𝑘𝑘𝐴𝐴𝑇𝑇
𝜋𝜋𝑚𝑚

𝑣𝑣𝑟𝑟𝑚𝑚𝑠𝑠 =
3𝑘𝑘𝐴𝐴𝑇𝑇
𝑚𝑚
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Verlet type integration (typical accuracy up to O(t4)): Most common in the MD land!
Simple to calculate, well preserves the energy along the trajectory (i.e. time-
reversible)

Propagation

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 +
𝜕𝜕𝑟𝑟
𝜕𝜕𝑝𝑝

Δ𝑝𝑝 +
1
2
𝜕𝜕2𝑟𝑟
𝜕𝜕𝑝𝑝2

Δ𝑝𝑝 2 +
1
6
𝜕𝜕3𝑟𝑟
𝜕𝜕𝑝𝑝3

Δ𝑝𝑝 3 + ⋯As usual, start with Taylor expansion

or 𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + �⃗�𝑣𝑖𝑖 Δ𝑝𝑝 +
1
2
�⃗�𝑝𝑖𝑖 Δ𝑝𝑝 2 +

1
6
𝑏𝑏𝑖𝑖 Δ𝑝𝑝 3 + ⋯ and 𝑟𝑟𝑖𝑖−1 = 𝑟𝑟𝑖𝑖 − �⃗�𝑣𝑖𝑖 Δ𝑝𝑝 +

1
2
�⃗�𝑝𝑖𝑖 Δ𝑝𝑝 2 −

1
6
𝑏𝑏𝑖𝑖 Δ𝑝𝑝 3 + ⋯

The original 
Verlet The leap-frog Verlet The Velocity Verlet

𝑟𝑟𝑖𝑖+1 = 2𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖−1 + �⃗�𝑝𝑖𝑖 Δ𝑝𝑝 2 + ⋯

�⃗�𝑝𝑖𝑖 =
�⃗�𝐹𝑖𝑖
𝑚𝑚𝑖𝑖

= −
1
𝑚𝑚𝑖𝑖

𝑑𝑑𝑉𝑉
𝑑𝑑𝑟𝑟𝑖𝑖

To initiate 𝑟𝑟−1 = 𝑟𝑟0 − �⃗�𝑣0Δ𝑝𝑝

Notevelocities( )
are not necessary but useful. Also
Is a large difference! Require 9N
variables for storage for i=1,…,N
(compact!)

𝑣𝑣 𝑝𝑝 = 𝑟𝑟 𝑝𝑝 + Δ𝑝𝑝 − 𝑟𝑟 𝑝𝑝 − Δ𝑝𝑝 /2Δ𝑝𝑝
2𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖−1

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + �⃗�𝑣
𝑖𝑖+12

Δ𝑝𝑝

�⃗�𝑣
𝑖𝑖+12

= �⃗�𝑣
𝑖𝑖−12

+ �⃗�𝑝𝑖𝑖Δ𝑝𝑝

�⃗�𝑝𝑖𝑖 =
�⃗�𝐹𝑖𝑖
𝑚𝑚𝑖𝑖

= −
1
𝑚𝑚𝑖𝑖

𝑑𝑑𝑉𝑉
𝑑𝑑𝑟𝑟𝑖𝑖

To initiate 𝑟𝑟−1 = 𝑟𝑟0 − �⃗�𝑣0Δ𝑝𝑝

Note velocities ( ) ‘leap’ over
coordinates half-step. Explicit
velocities is a plus. But and
are out of phase

�⃗�𝑣
𝑖𝑖+12

�⃗�𝑣 𝑟𝑟

𝑟𝑟𝑖𝑖+1 = 𝑟𝑟𝑖𝑖 + �⃗�𝑣𝑖𝑖Δ𝑝𝑝 +
1
2
�⃗�𝑝Δ𝑝𝑝2

�⃗�𝑣𝑖𝑖+1 = �⃗�𝑣𝑖𝑖 +
1
2
�⃗�𝑝𝑖𝑖 + �⃗�𝑝𝑖𝑖+1 Δ𝑝𝑝

�⃗�𝑝𝑖𝑖 =
�⃗�𝐹𝑖𝑖
𝑚𝑚𝑖𝑖

= −
1
𝑚𝑚𝑖𝑖

𝑑𝑑𝑉𝑉
𝑑𝑑𝑟𝑟𝑖𝑖

To initiate 𝑟𝑟−1 = 𝑟𝑟0 − �⃗�𝑣0Δ𝑝𝑝
Best numerical performance 
and compact storage make 
it method pf choice for MD 

codes!
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NVE (microcanonical) ensemble is natural: energy is conserved being redistributed
along potential and kinetic parts along the trajectory

Thermostat

What about NVT (canonical) ensemble? Need thermostat (e.g. Anderson, Nose-Hoover,
Berendsen, Langevin etc.) allowing an exchange of the energy with a bath (e.g. solvent,
buffer-gas)
Langevin equation of motion 𝑚𝑚

𝑑𝑑2𝑟𝑟
𝑑𝑑𝑝𝑝2

= −𝜁𝜁
𝜕𝜕𝑟𝑟
𝜕𝜕𝑝𝑝

+ �⃗�𝐹𝑖𝑖𝑛𝑛𝑡𝑡𝑟𝑟𝑑𝑑 + �⃗�𝐹𝑟𝑟𝑑𝑑𝑛𝑛𝑏𝑏𝑡𝑡𝑚𝑚

Compared to the standard Newton’s equation we
have new terms:

1) - friction term with a friction coefficient
(~2ps-1), which removes energy from the
system

2) - random force associated with the
temperature, which balances energy from the
system

𝜁𝜁�⃗�𝑣 𝜁𝜁

�⃗�𝐹𝑟𝑟𝑑𝑑𝑛𝑛𝑏𝑏𝑡𝑡𝑚𝑚

T = 10 K

T = 300 K
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Implementation

�
𝑖𝑖

�⃗�𝑝𝑖𝑖 2

𝑚𝑚𝑖𝑖
= 3𝑑𝑑𝑘𝑘𝐴𝐴𝑇𝑇

�
𝑖𝑖

�⃗�𝑝𝑖𝑖 2

𝑚𝑚𝑖𝑖
+ �

𝑗𝑗>𝑖𝑖

𝑟𝑟𝑖𝑖𝑗𝑗�⃗�𝐹𝑖𝑖𝑗𝑗 = 3𝑝𝑝𝑉𝑉

Thermostat

Barostat

Rescale velocities by λ and coordinates (or unit cell) by µ, where

𝜆𝜆2 = 1 + 𝛾𝛾Δ𝑝𝑝
𝑇𝑇0
𝑇𝑇
− 1 , 𝜇𝜇3 = 1 − 𝛽𝛽Δ𝑝𝑝 𝑝𝑝0 − 𝑝𝑝 ,

Advanced thermostat, barostat, and integrator see in program manuals
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Example 1

Simulation of indentation of nanometer-
thick carbon membranes by using
c;assical MD with Tersoff potential (direct
simulation of experimental setup)
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Example 3
EAM potential

Molecular dynamics to simulate the PVD
synthesis of Cu–Au nanoalloys through the
non-isothermal aggregation of Cu and Au
atoms at a 3:1 ratio in the Ar atmosphere to
obtain realistic structures of Cu–Au
nanoparticles
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Examples 4,5
Tersoff many-body potential

Nanoscale, 10, 8099 (2018)

100 nm



Molecular dynamics

57

Examples 6,7
Tersoff many-body potential

Application of classical
potentials and MD
simulations to describe
irradiation and changes of
structure of carbon
nanomaterials
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Coarse graining

Aim is to simulate the behavior of complex systems using their coarse-grained (simplified)
representation.
Coarse-grained models are widely used for molecular modeling of biomolecules at various
granularity levels.
Idea is to simulate coarse grained model, then get back to all-atom description to refine local
geometry

Multiscale coarse-grained (CG)
Bisphenol-A polycarbonate chemical
structure and the corresponding CG
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Thermodynamics variables: volume (V), pressure (p), temperature (T). Number of particles (N),
energy (E), chemical potential (µ)
Statistical mechanics: connection between properties of a microscopic system and a
macroscopic sample
Ensemble: collection of microscopic states consistent with thermodynamic boundary conditions; defined
by 3 variables (NVT) or (NVE) or (NPT) or (µVT)

Boltzmann probability: relative probability to be in a state with an energy E at a temperature T
and is proportional to exp(-E/kBT)
Partition function is a key quantity
in statistical mechanics, a
normalization factor for the
Boltzmann probability distribution:

𝑄𝑄 = �
𝑖𝑖

∞

𝑒𝑒−𝐸𝐸𝑖𝑖/𝑖𝑖𝐵𝐵𝑇𝑇 = �𝑒𝑒−𝐸𝐸 𝑟𝑟,�⃗�𝑖 /𝑖𝑖𝐵𝐵𝑇𝑇 𝑑𝑑𝑟𝑟𝑑𝑑�⃗�𝑝

Everything can be expressed through Q, e.g., for a
canonical ensemble (NVT)
- Internal energy 𝑈𝑈 = 𝑘𝑘𝐴𝐴𝑇𝑇2

𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝑇𝑇 𝑉𝑉

- Enthalpy 𝐻𝐻 = 𝑈𝑈 + 𝑃𝑃𝑉𝑉 = 𝑘𝑘𝐴𝐴𝑇𝑇2
𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝑇𝑇 𝑉𝑉

+ 𝑘𝑘𝐴𝐴𝑇𝑇𝑉𝑉
𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝑉𝑉 𝑇𝑇

- Entropy 𝑆𝑆 =
𝑈𝑈 − 𝐴𝐴
𝑇𝑇

= 𝑘𝑘𝐴𝐴𝑇𝑇2
𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝑇𝑇 𝑉𝑉

+ 𝑘𝑘𝐴𝐴𝑇𝑇 ln𝑄𝑄

- Gibbs free energy 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑆𝑆 = 𝑘𝑘𝐴𝐴𝑇𝑇𝑉𝑉
𝜕𝜕 ln𝑄𝑄
𝜕𝜕𝑉𝑉 𝑇𝑇

− 𝑘𝑘𝐴𝐴𝑇𝑇 ln𝑄𝑄

- Helmholtz free energy 𝐴𝐴 = 𝑈𝑈 − 𝑇𝑇𝑆𝑆 = −𝑘𝑘𝐴𝐴𝑇𝑇 ln𝑄𝑄
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Microcanonical (NVE): Newtonian system (N = const) in box (V = const) with elastic walls (or
PBC)

Canonical (NVT): Newtonian system (N = const) in box (V = const) with non-elastic walls (walls
are equilibrated with T = const - thermostat)

Isothermal-isobaric (NPT): Newtonian system (N = const) in box with varying volume (keeping P
= const - barostat) and non-elastic walls (keeping T = const - thermostat)
Grand-canonical (µVT): Open system (number of particles is not conserved but their energy in
the reservoir is fixed at µ
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MD vs MC
Ergodicity: Time-average of a property can be replaces by a suitable average over collection
of possible microscopic states (ensemble average)
Given a potential energy surface Ep(r), what are
the possible modeling route for generating
ensembles?
Molecular dynamics (MD): propagate Newton’s
equation of motion, analyze trajectories –
generally gives rates and time constants

Monte-Carlo (MC): ‘flip a coin’ statistical
approach
(T is an essential component) – gives information
on the thermodynamics, no rates and time scales
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Sampling
Replace strategy
“first pick, then weight” with
“first weight, the pick”
by penalizing states with high energy
by a Boltzmann factor exp(-ΔE/kBT)
How?
Say on (i-1) step, the energy of accepted
configuration is Ei-1
on ith step, the energy of new
configuration is Ei
Case1: Ei<Ei-1: Good! We are going lower,
accept i
Case2: Ei>Ei-1: We are going higher,
calculate exp(-ΔE/kBT) = exp(-(Ei<Ei-1)/kBT),
pick a random number ξ from [0,1]
If ξ > exp(-ΔE/kBT) reject it
If ξ < exp(-ΔE/kBT) accept it

Metropolis (+Fermi, Ulam, von Neuman)
Monte-Carlo (1952): “walks” through phase space
(Markov chain of states) visiting each state with
proper probability (in the infinite time limit)Algorithm

Generate trial configuration q1, its energy 
E1=E(q1) and store the desired property 

A1=A(q1)

For i = 2,…,M do

Perturb the system, get new configurations

Calculate energy of qi: Ei = E(qi) 

Calculate

Test Ei vs Ei-1 for acceptance

If rejected, discard qi

If accepted, calculate and store Ai=A(qi)

If i < M

𝐴𝐴 𝑀𝑀 =
1
𝑀𝑀
�
𝑖𝑖=1

𝑀𝑀

𝐴𝐴𝑖𝑖
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1) The natural Monte-Carlo ensemble is (NVT)

Practical 
consideration

2) The “Devil is in details”: the art of running an MC calculation lies
in defining the perturbation step(s)
If the steps are very small, then volume of phase space sampled will
increase only slowly over time, and it is computationally expensive.
If the steps are too large, then the rejection rate will grow so high
that again resources will be wasted by an inefficient phase space.

3) Monitoring convergence of <A(M)> and possibly <E(M)> with M is
necessary
This will tell you a lot about convergence rate and possible
transitions to a different PES valley
4) Multiple MC variations were developed, including different
ensembles, annealing (varying T) algorithms, simulating timescales.
For example, (NPT) isothermal-isobaric ensemble, G (Gibbs free
energy) at min (frequent in experimental conditions)

Δ𝐸𝐸 → Δ𝐸𝐸 + 𝑃𝑃Δ𝑉𝑉 − 𝑑𝑑𝑘𝑘𝐴𝐴𝑇𝑇 ln 1 + Δ𝑉𝑉/𝑉𝑉 Example of PES
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