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Single-atom-alloy catalysts (SAACs) have recently become a frontier in catalysis research.

Simultaneous optimization of reactants’ facile dissociation and a balanced strength of

intermediates’ binding make them highly efficient catalysts for several industrially important

reactions. However, discovery of new SAACs is hindered by lack of fast yet reliable prediction

of catalytic properties of the large number of candidates. We address this problem by

applying a compressed-sensing data-analytics approach parameterized with density-

functional inputs. Besides consistently predicting efficiency of the experimentally studied

SAACs, we identify more than 200 yet unreported promising candidates. Some of these

candidates are more stable and efficient than the reported ones. We have also introduced a

novel approach to a qualitative analysis of complex symbolic regression models based on the

data-mining method subgroup discovery. Our study demonstrates the importance of data

analytics for avoiding bias in catalysis design, and provides a recipe for finding best SAACs

for various applications.
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Recently, single-atom dispersion has been shown to dra-
matically reduce the usage of rare and expensive metals in
heterogeneous catalysis, at the same time providing unique

possibilities for tuning catalytic properties1,2. The pioneering
work by Sykes and co-workers2 has demonstrated that highly
dilute bimetallic alloys, where single atoms of Pt-group are dis-
persed on the surface of an inert metal host, are highly efficient
and selective in numerous catalytic reactions. These alloy catalysts
are now extensively used in the hydrogenation-related reactions
such as hydrogenation of CO2, water–gas shift reaction, hydrogen
separation, and many others3–5. The outstanding performance of
SAACs is attributed to a balance between efficiency of H2 dis-
sociation and binding of H at the surface of metallic alloys2,6,7.

Using desorption measurements in combination with high-
resolution scanning tunneling microscopy, Kyriakou et al. have
shown that isolated Pd atoms on a Cu surface can substantially
reduce the energy barrier for both hydrogen uptake and sub-
sequent desorption from the Cu metal surface2. Lucci and co-
workers have observed that isolated Pt atoms on the Cu(111)
surface exhibit stable activity and 100% selectivity for the
hydrogenation of butadiene to butenes8. Liu et al. have investi-
gated the fundamentals of CO adsorption on Pt/Cu SAAC using a
variety of surface science and catalysis techniques. They have
found that CO binds more weakly to single Pt atoms in Cu(111),
compared to larger Pt ensembles or monometallic Pt. Their
results demonstrate that SAACs offer a new approach to design
CO-tolerant materials for industrial applications9. To date, Pd/
Cu10–12, Pt/Cu7–9,13–15, Pd/Ag12,16, Pd/Au12, Pt/Au17, Pt/Ni18,
Au/Ru19, and Ni/Zn20 SAACs have been synthesized and found
to be active and selective towards different hydrogenation reac-
tions. However, the family of experimentally synthesized SAACs
for hydrogenation remains small and comparisons of their cata-
lytic properties are scarce.

Conventional approaches to designing single-atom hetero-
geneous catalysts for different industrially relevant hydrogenation
reactions mainly rely on trial-and-error methods. However,
challenges in synthesis and in situ experimental characterization
of SAACs impose limitations on these approaches. With advances
in first-principles methods and computational resources, theore-
tical modeling opens new opportunities for rational catalyst
design6,21–48. A general simple yet powerful approach is the
creation of a large database with first-principles based inputs,
followed by intelligent interrogation of the database in search of
materials with the desired properties35,48. Significant efforts have
been made in developing reliable descriptor-based models fol-
lowing the above general approach6,21–35,48. In catalysis, a
descriptor is a parameter (a feature) of the catalytic material that
is easy to evaluate and is correlated with a complex target
property (e.g., activation energy or turnover frequency of a cat-
alytic reaction). A notable amount of research has been devoted
to searching for and using descriptors with a simple (near-linear)
relation to target properties22–30. For example, the linear rela-
tionship between the reaction energies and the activation energies
is known as the Brønsted–Evans–Polanyi relationship (BEP) in
heterogeneous catalysis29,30,45–47. Also, the linear correlation
between d-band center of a clean transition-metal surface and
adsorption energies of molecules on that surface have been stu-
died in great detail and widely applied22–24,36,44. In catalysis,
near-linear correlations between adsorption energies of different
adsorbates are referred to as scaling relations26,28,37. The advan-
tages of such correlations are their simplicity and usually clear
physical foundations. However, they are not exact, and there is an
increasing number of studies focused on overcoming limitations
imposed by the corresponding approximations6,31–34,38–41,48. The
nonlinear and intricate relationship between the catalysts’ prop-
erties and surface reactions at realistic conditions42,43 has held

back the reliable description of catalytic properties. Note that,
although the stability of SAACs is of no less significance in
designing a potential catalyst than their catalytic performance, it
hasn’t received the same level of attention.

In this work, combining first-principles calculations and
compressed-sensing data-analytics methodology, we address the
issues that inhibit the wider use of SAAC in different industrially
important reactions. By identifying descriptors based only on
properties of the host surfaces and guest single atoms, we predict
the binding energies of H (BEH), the dissociation energy barriers
of H2 molecule (Eb), the segregation energies (SE) of the single
guest atom at different transition metal surfaces, and the segre-
gation energies in the presence of adsorbed hydrogen (SEH). The
state-of-the-art compressed-sensing based approach employed
here for identifying the key descriptive parameters is the recently
developed SISSO (sure independence screening and sparsifying
operator)49. SISSO enables us to identify the best low-
dimensional descriptor in an immensity of offered candidates.
The computational time required for our models to evaluate the
catalytic properties of a SAAC is reduced by at least a factor of
one thousand compared to first-principles calculations, which
enables high-throughput screening of a huge number of SAAC
systems.

Results and discussion
The BEH for more than three hundred SAACs are calculated
within the framework of DFT with RPBE exchange-correlation
functional. This large dataset consists of BEH values at different
low-index surface facets including fcc(111), fcc(110), fcc(100),
hcp(0001), and bcc(110) and three stepped surface facets
including fcc(211), fcc(310), and bcc(210) of SAACs with twelve
transition-metal hosts (Cu, Zn, Cr, Pd, Pt, Rh, Ru, Cd, Ag, Ti, Nb,
and Ta). On each TM host surface, one of the surface atoms is
substituted by a guest atom to construct the SAACs. BEH for
pristine surfaces (where the guest atom is the same with the host
metal) are also included. H atom is placed at different non-
equivalent high-symmetry sites close to the guest atom (Supple-
mentary Fig. 1), and the BEH for the most favorable site is
included in the data set. Complete information on adsorption
sites and the corresponding BEH is given in Supplementary
Data 1. The BEH are further validated by a comparison with
previous calculations6,21.

To better understand the variation in BEH for different guest
atoms, we first investigate correlation between BEH and the d-
band center of the d orbitals that are projected to the single guest
atom for the alloyed systems. We find that this way of calculating
d-band center provides better correlation with other properties
than d-band centers for the d orbitals projected on (i) the single
guest atom plus it’s 1st nearest neighbor shell or (ii) the whole
slab50. The correlation is shown in Fig. 1a (Supplementary Fig. 2)
for different SAACs on Ag(110) host surface [Pt(111) host sur-
face]. According to the d-band center theory21,23,36,44, the closer
the d-band center is to the Fermi level, the stronger the BEH
should be. However, it is evident from Fig. 1a (Supplementary
Fig. 2) that the expected linear correlation, as predicted by the d-
band model, is broken for SAACs for H adsorption. This is due to
the small size of the atomic H orbitals, leading to a relatively weak
coupling between H s and the TM d-orbitals21. Furthermore, we
check the validity of the BEP relations between the Eb and the H2

dissociation reaction energy for SAACs (Fig. 1b), which is com-
monly used to extract kinetic data for a reaction on the basis of
the adsorption energies of the reactants and products29,45–47. As
shown in Fig. 1b, the highlighted SAACs inside the blue dotted
circle significantly reduce Eb while reducing reaction energy only
moderately. As a result, SAACs provide small reaction energy and
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low activation energy barrier, which leads to breaking BEP rela-
tions and thus optimized catalytic performance. The BEP rela-
tions are also found to be broken for other reactions catalyzed by
SAACs6.

Thus, the standard simple correlations (from d-band center
theory and the BEP relations) fail for H adsorption on SAACs.
Moreover, the calculation of the d-band center for each SAAC is
highly computationally demanding, considering the very large
number of candidates. These facts emphasize the necessity to find
new accurate, but low-cost descriptors for computational
screening of SAACs. In the SISSO method, a huge pool of more
than 10 billion candidate features is first constructed iteratively by
combining 19 low-cost primary features listed in Table 1 using a
set of mathematical operators. A compressed-sensing based
procedure is used to select one or more most relevant candidate
features and construct a linear model of the target property (see
Supplementary Methods for details on the SISSO procedure).

Note that the three primary surface features are properties of the
pure host surfaces (elemental metal systems). This is undoubtedly
much more efficient than obtaining the properties of SAACs
(alloyed metal systems). In the latter case, due to the interaction
between the single guest atom and its images, a large supercell of
the whole periodic system containing guest atom and host surface
needs to be computed. On the contrary, only smallest unit cell is
needed to compute the pristine surface features.

To test the predictive power of obtained models, we employ 10-
fold cross validation (CV10). The dataset is first split into ten
subsets, and the descriptor identification along with the model
training is performed using nine subsets. Then the error in pre-
dicting properties of the systems in the remaining subset is
evaluated with the obtained model51–53. The CV10 error is
defined as the average value of the test errors obtained for each of
the ten subsets. In SISSO over-fitting may occur with increasing
dimensionality of the descriptor (i.e., the number of complex
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Fig. 1 Correlation between simple descriptors and target properties. Correlation between a H-atom binding energy BEH and the d-band center and b the
H2 dissociation energy barrier Eb and the H2 dissociation reaction energy for Ag(110) based SAACs. Only most stable adsorption sites are included (the
hollow site for all systems on this plot). The SAACs inside the blue dotted circle in b significantly reduce Eb while reducing reaction energy only moderately.

Table 1 Primary features used for the descriptor construction.

System Class Name Abbreviation

Host Atomic Energy of the highest-occupied Kohn-Sham level H*
Energy of the lowest-unoccupied Kohn-Sham level L*
Electron affinity (Atomic radius) EA*(R*)a

Ionization potential IP*
Binding energy of H with single host metal atom EH*(EB*)a

(Binding energy of host metal dimers)
Binding distance of H with single host metal atom dH*(dd*)a

(Binding distance of host metal dimer)
Bulk Cohesive energy EC*

d-band center DC*
Surfaceb d-band center of the top surface layer DT*

d-band center of the subsurface layer DS*
Slab Fermi level F*

Guest atom Atomic Energy of the highest-occupied Kohn-Sham level H
Energy of the lowest-unoccupied Kohn-Sham level L
Electron affinity (Atomic radius) EA(R)a

Ionization potential IP
Binding energy of H with single guest metal atom EH(EB)a

(Binding energy of guest metal dimers)
Binding distance of H with single guest metal atom dH(dd)a

(Binding distance of guest metal dimers)
Bulk Cohesive energy EC

d-band center DC

aThe feature in parentheses is used for the model of segregation energy (SE), while the feature outside parentheses is used for the models of H binding energy (BEH) and H2 dissociation energy barrier
(Eb).
bThe host metal-based features are marked by *. The surface-based primary features were calculated using the slab unit cell consisting of one atom per atomic layer.
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features that are used in construction of the linear model)49. The
descriptor dimension at which the CV10 error starts increasing
identifies the optimal dimensionality of the descriptor (details of
the validation approach can be found in Supplementary Meth-
ods). For the optimal dimensionality, the same set of primary
features is found during CV10 in 9, 8, and 8 cases for the SISSO
models of BEH, Eb, and SE, respectively. The root-mean-square
errors (RMSE), together with the CV10 errors of the SISSO
models for BEH, Eb, and SE are displayed in Fig. 2a. The obtained
optimal descriptor dimensionalities for BEH, Eb, and SE of the
SAACs are 5, 6, and 6, respectively. Distribution of errors for the
best models versus RPBE results is displayed in Fig. 2b–d. The
RMSE and maximum absolute error (MAE) of the models are

also shown. The error distributions for all the lower-dimensional
models relative to the best ones are displayed in Supplementary
Figs. 4–6.

From the Table 2 one can see that the d-band center features
DC, DC*, DT, DT*, DS, and DS* appear in every dimension of
the descriptors for BEH and Eb, consistent with the well-
established importance of d-band center for adsorption at
transition-metal surfaces21,23,36,44. The cohesive energies of guest
(EC) and host (EC*) bulk metals are selected in each dimension
of the descriptor for SE. This is due to the fact that the segregation
is driven by the imbalance of binding energy between host and
guest–host atoms. Interestingly, most of the descriptor compo-
nents include only simple mathematical operators (+, −, ·, /, ||),

(a) (b)

(c) (d)
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Fig. 2 SISSO errors and their distribution for different target properties. a RMSE and the averaged RMSE of the 10 fold cross-validation. b–d Distribution
of errors for the best models versus RPBE results for BEH (b), Eb (c), and SE (d).

Table 2 The identified descriptors and the coefficients and correlations in corresponding SISSO models for BEH, Eb, and SE.

Property dm Descriptor Coefficient Correlation

BEH d51 (EA*+ 2 F*− EC) ∙DT* ∙ EH*/(EC*+ F*) 0.12653E+00 0.8964
d52

ffiffiffiffiffiffiffi
DC3

p
∙H* ∙DT* ∙ (|EA*− EH*| − |EC− EC*|) −0.20440E−02 0.5891

d53 |EH*− L*− |EH− F*|| / (DC2+ EC ∙ EC*) −0.50891E+00 0.4850
d54 |EH− F*− EH* | −| EC*− EC− |DT*− F*|| 0.34705E−01 0.3849
d55 L ∙ EC ∙ (EA*+DS*− |H− EH| / |L*− EH*| −0.48772E−04 0.3862

Eb d61 ((IP*− L)− |EC*−DT* |)/ |EC/DC− L*/IP*| −0.87339E−01 0.7643
d62 (EA*+DC*+ |DC−DT*|)/(EA*+ EH*+ |L*− F*|) −0.19577E−01 0.5726
d63 (DC+ EH*) ∙ (EC*− F*) ∙ (|L− EC | − |EC− EH|) −0.13173E−01 0.4568
d64 (DT*− EH) ∙DC ∙ (H/EC+ EA*/L*)/EC* −0.19172E−01 0.4414
d65 eEC∙EH ∙DS*/((L*−DS*)+ |H*− EC*|) 0.33549E−01 0.3768
d66 DC2 ∙ (EC*− F*)/(DT*− F*− EA+ EC) −0.14362E−02 0.3643

SE d61 (EC+ IP+ |F*−DT* |) / (IP*/R+H*/dd*) −0.82665E+00 0.8969
d62 |DC− EB*| ∙ (L−DC− EC)/EB2 0.30742E+00 0.5346
d63 ||EC*− L*| + |DC−DS*| − |DC− F*|− |EC− F*|| 0.11317E+00 0.5386
d64 |H− IP− L+ IP*| / ((DC/EC)+ (EC/H)) 0.17455E+00 0.3913
d65 (F*− EC) ∙ (L*−DT*− IP)/(F*− EB*) −0.51761E−02 0.3982
d66 EC* ∙DC ∙ (EB*− L) ∙ (L+ L*− EC−DS*) −0.80032E−03 0.3379
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indicating that the primary features already capture most of the
complexity of the target properties.

We employ the identified computationally cheap SISSO models
to perform high-throughput screening of SAACs to find the best
candidates for the hydrogenation reactions. The results for BEH,
Eb, and SEH (the segregation energy when surface H adatom is
present, where the H adatom induced segregation energy change
is included, see the “Methods” part for details) of the flat surfaces
are displayed in Fig. 3a–c (see Supplementary Fig. 7 for the results
for the stepped surfaces, the values of BEH, Eb, and SEH for all the
SAACs are given in Supplementary Data 1).

The choice of the screening criteria for the three properties
BEH, Eb, and SEH, which are related to the activity and stability of

SAACs, plays the central role in the screening processes and
determines the candidates to be chosen. Previous work demon-
strates that for the high performance in hydrogenation reactions,
SAACs should exhibit weaker binding of H and lower H2 dis-
sociation energy barrier simultaneously2. However, different cri-
teria are applicable for different reaction conditions. For example,
at low temperatures SAACs can maintain their stability for a
longer time. At higher temperatures H atoms will desorb from the
surfaces and larger energy barriers can be overcome, resulting in a
requirement for stronger binding and higher upper limit of the
dissociation barrier Eb. Keeping this variability in mind, we
consider temperature-dependent and pressure-dependent selec-
tion criteria (see “Methods” section below for details on the
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selection criteria). We have screened more than five thousand
SAAC candidates (including about the same number of flat and
stepped surfaces; the values of the primary features for all the
candidates can be found in the Supplementary Data 2) at both
low temperature (200 K) and high temperature (700 K) at partial
H2 pressure p= 1 atm. We find 160 flat-surface SAACs (Fig. 3d,
in green) and 134 stepped-surface SAACs (Supplementary
Fig. 7d, in green) that are both active and stable at a low tem-
perature (200 K). At a higher temperature (700 K), 102 flat-
surface SAACs (Fig. 3d, in blue and green) and 136 stepped-
surface SAACs (Supplementary Fig. 7d, in blue and green) are
classified as promising SAACs for hydrogenation reactions.
Moreover, we have identified the SAACs that are promising in a
wide range of temperatures (green squares in Fig. 3d for flat
surfaces and Supplementary Fig. 7d for stepped surfaces).

Note that, without the stability selection criterion based on
SEH, all experimentally established SAACs (Pd/Cu, Pt/Cu, Pd/Ag,
Pd/Au, Pt/Au, Pt/Ni, Au/Ru, and Ni/Zn) are predicted to be good
catalysts in the temperature range of 200 K < T < 700 K, which is
further confirmed by DFT calculations. However, some of these
systems (Pd/Ag and Pd/Au) are experimentally shown to have
low stability12,16. Thus, inclusion of the stability-related property
SEH is of immense importance for a reliable prediction of catalytic
performance, as is confirmed by our results. We note that a
machine-learning study on stability of single-atom metal alloys
has recently been reported54. However, our analysis takes into
account effects of adsorbates on the segregation energy, which has
not been considered previously. For example, the SE for Pd/Ag
(110) and Pt/Ag(110) systems are 0.33 eV and 0.46 eV, respec-
tively, implying that the Pd and Pt impurities tend to segregate
into the bulk of the Ag(110) systems. However, SEH for Pd/Ag
(110) and Pt/Ag(110) systems are −0.10 eV and −0.21 eV,
respectively, suggesting Pd and Pt impurities will segregate to the
surface in the presence of H adatom. These results are also
consistent with the experimental observations that the efficiency
of Pd/Ag single-atom catalysts towards the selective hydrogena-
tion of acetylene to ethylene was highly improved with the pre-
treatment of the samples under H2 conditions16.

We define an activity (or efficiency) indicator involving both
the free energy of H adsorption (ΔG) and the energy barrier (Eb)
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔG2 þ E2

b

p
to construct an activity-stability map. As shown in

Fig. 4, some of the new discovered candidates (bottom-left corner
of activity-stability map) are predicted to have both higher sta-
bility and efficiency than the reported ones, making them opti-
mized for practical applications (see Supplementary Fig. 8 for the
results for the stepped surfaces). As expected, stability and activity
are inversely related, which can be seen from the negative slope of
the general trend in Supplementary Fig. 8 (showing selected
materials) and Supplementary Fig. 9 (showing all explored
materials), as well as a cut-off in population of the lower left-hand
corner of these plots. Nevertheless, we have found several mate-
rials that are predicted to be better SAACs than the so-far
reported ones. Considering stability, activity, abundance, and
health/safety, two discovered best candidates Mn/Ag(111) and Pt/
Zn(0001) are highlighted in Fig. 4. The aggregation energies for
Mn/Ag(111), Pt/Zn(0001), and the experimentally established
SAACs are also tested and displayed in Supplementary Table 9.

Although the SISSO models are analytic formulas, the corre-
sponding descriptors are complex, reflecting the complexity of the
relationship between the primary features and the target properties.
While potentially interpretable, the models do not provide a
straightforward way of evaluating relative importance of different
features in actuating desirable changes in target properties. To
facilitate physical understanding of the actuating mechanisms, we
apply the subgroup discovery (SGD) approach55–60. SGD finds local

patterns in the data that maximize a quality function. The patterns
are described as an intersection (a selector) of simple inequalities
involving provided features, e.g., (feature1 < a1) AND (feature2 >
a2) AND… . The quality function is typically chosen such that it is
maximized by subgroups balancing the number of data points in
the subgroup, deviation of the median of the target property for the
subgroup from the median for the whole data set, and the width of
the target property distribution within the subgroup60.

Here, we apply SGD in a novel context, namely as an analysis
tool for symbolic regression models, including SISSO. The pri-
mary features that enter the complex SISSO descriptors of a given
target property are used as features for SGD (see Table 2). The
data set includes all 5200 materials and surfaces used in the high-
throughput screening. The target properties are evaluated with
the obtained SISSO models. Five target properties are considered:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2
b

p
, SE, SEH, Eb, |ΔG|, and BEH. Since we are interested

mainly in catalysts that are active at normal conditions, ΔG is
calculated at T = 300 K. Our goal is to find selectors that mini-
mize these properties within the subgroup. Such selectors describe
actuating mechanisms for minimization of a given target prop-
erty. For SE, the following best selector is found: (EC* ≤−3.85
eV) AND (−3.36 eV < EC ≤−0.01 eV) AND (IP ≥ 7.45 eV). The
corresponding subgroup contains 738 samples (14% of the whole
population), and the distribution of SE within the subgroup is
shown in Supplementary Fig. 10. Qualitatively, the first two
conditions imply that the cohesive energy of the host material is
larger in absolute value than the cohesive energy of the guest
material. Physically this means that bonding between host atoms
is preferred over bonding between guest atoms and therefore over
intermediate host–guest binding. This leads to the tendency of
maximizing the number of host–host bonds by pushing guest
atom to the surface. We note that this stabilization mechanism
has been already discussed in literature61, and here we confirm it
by data analysis. In addition, we find that stability of SAACs
requires that the ionization potential of the guest atom is high.
This can be explained by the fact that lower IP results in a more
pronounced delocalization of the s valence electrons of the guest
atom, and partial charge transfer to the surrounding host atoms.
The charge transfer favors larger number of neighbors due to
increased Madelung potential, and therefore destabilizes surface
position of the guest atom.

Fig. 4 Stability vs. activity map for flat SAACs surfaces at T = 298 K and
p = 1 atm. The SEH on y-axis represents stability and activity parameterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔG2 þ E2b

q
is shown on x-axis. Experimentally established SAACs are

denoted with red solid spheres and the blue open circles represent new
predicted candidates.
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We calculate SEH using SISSO models for SE and BEH [see Eq.
(3) in the “Methods” section]. Therefore, SGD for SEH is per-
formed using primary features present in the descriptors of both
SE and BEH. The top subgroup contains features related to
binding of H to the host and guest metal atoms, e.g., (EB* <
−5.75 eV) AND (EH* ≤−2.10 eV) AND (EH ≥−2.88 eV) AND
(IP* ≤ 7.94 eV) AND (IP > 8.52 eV) AND (R ≥ 1.29 Å). However,
the distribution of SE for this subgroup is very similar to the
distribution of SEH, which means that the stability of guest atoms
at the surface is weakly affected by H adsorption when guest
atoms are already very stable at the surface. The important effect
of H adsorption is revealed when we find subgroups minimizing
directly SEH—SE (in this case only primary features that appear
in the SISSO descriptor of BEH are considered for SGD analysis).
The top subgroup we found contains 72 samples (1.4% of the
whole population) and is described by several degenerate selec-
tors, in particular (−2.35 eV ≤ EH* ≤−2.32 eV) AND (EC* >
−2.73 eV) AND (EC <−5.98 eV) AND (H ≥−5.12 eV). This is a
very interesting and intuitive result. Distributions of SEH and SE
for this subgroup are shown in Supplementary Fig. 11. The SE for
all materials in the subgroup is above 0 eV. However, SEH is much
closer to 0 eV, and is below 0 eV for a significant number of
materials in this subgroup. The conditions on the cohesive energy
of guest and host metals (very stable bulk guest metal and less
stable bulk host metal) are reversed with respect to SE, i.e.,
adsorption of hydrogen affects strongly the systems where guest
atom is unstable at the surface. This increases the reactivity of the
guest atom towards an H atom. The condition (EH* ≥−2.35 eV)
selects materials where interaction of H with a host atom is not
too strong, so that H can bind with the guest atom and stabilize it
at the surface. The condition (EH* ≤−2.32 eV) makes the sub-
group narrower, which further decreases median difference
SEH—SE but has no additional physical meaning. The condition
(H ≥−5.12 eV) has a minor effect on the subgroup.

One of the top selectors (among several describing very similar
data subsets) for minimizing

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔG2 þ E2

b

p
(calculated at T = 300

K) is: (−2.85 eV ≤ DC ≤ 1.95 eV) AND (DT* ≤−0.17 eV). The
corresponding subgroup contains 1974 samples (38% of the
whole population). The distribution of Eb within the subgroup is
shown in Supplementary Fig. 10. The selector implies that sys-
tems providing low barrier for H2 dissociation, and at the same
time balanced binding of H atoms to the surface are characterized
by (i) d-band center of the bulk guest metal around the Fermi
level and (ii) d-band center of the host surface top layer below the
Fermi level. This can be understood as follows. Condition (i)
implies that there is a significant d-electron density that can be
donated to the adsorbed H2 molecule, facilitating its dissociation.
A very similar (apart from slightly different numerical values)
condition appears in the selector for the best subgroup for Eb
target property alone [(−2.05 eV ≤ DC ≤ 1.46 eV) AND (EC* ≥
−6.33 eV)]. Condition (ii) implies that the surface d-band is more
than half-filled, so that additional electrons are available for
transferring to the H2 molecule for its activation without causing
excessive binding and therefore minimizing |ΔG| in accordance
with Sabatier principle. Indeed, several subgroups of surfaces
binding H atoms strongly (minimizing BEH) are described by
selectors including condition DT* >−0.17, which is exactly
opposite to condition (ii). Analysis of BEH and |ΔG| also shows
that the strong and intermediate binding of H atoms to the
surface is fully controlled by the features of host material.

We note that SGD is capable of finding several alternative
subgroups, corresponding to different mechanisms of actuating
interesting changes in target properties. These subgroups have a
lower quality according to the chosen quality function, but they
still contain useful information about a particular mechanism. In

fact, they can be rigorously defined as top subgroups under
additional constraint of zero overlap (in terms of data points)
with previously found top subgroups. Analysis of such subgroups
can be a subject of future work. We also note that quality function
used in SGD is a parameter and can affect the found subgroups. It
should be chosen based on the physical context of the problem.
Exploring the role of different factors in the quality function and
taking into account proposition degeneracy (no or minor effect of
different conditions in the selectors due to correlation between
the features) can significantly improve interpretability of the
selectors. The interpretability also depends crucially on our
physical understanding of the features and relations between
them. Nevertheless, in combination with human knowledge SGD
analysis allows for development of understanding, that would not
be possible without the help of artificial intelligence.

In summary, by combining first-principles calculations and the
data-analytics approach SISSO, we have identified accurate and
reliable models for the description of the hydrogen binding
energy, dissociation energy, and guest-atom segregation energy
for SAACs, which allow us to make fast yet reliable prediction of
the catalytic performance of thousands SAACs in hydrogenation
reactions. The model correctly evaluates performance of experi-
mentally tested SAACs. By scanning more than five thousand
SAACs with our model, we have identified over two hundred new
SAACs with both improved stability and performance compared
to the existing ones. We have also introduced a novel approach to
a qualitative analysis of complex SISSO descriptors using data-
mining method subgroup discovery. It allows us to identify
actuating mechanisms for desirable changes in the target prop-
erties, e.g., reaction barrier reduction or an increase in catalyst’s
stability, in terms of basic features of the material. Our metho-
dology can be easily adapted to designing new functional mate-
rials for various applications.

Methods
All first-principles calculations are performed with the revised Perdew-Burke-
Ernzerhof (RPBE) functional62 as implemented in the all-electron full-potential
electronic-structure code FHI-aims63. The choice of functional is validated based
on a comparison of calculated H2 adsorption energies to the available experimental
results64 (see Supplementary Table 1). Nevertheless, it is expected that, because of
the large set of systems inspected and the small variations introduced by the
functional choice, the main trends will hold even when using another functional
(see Supporting Information for more details on the computational setup). The
climbing-image nudged elastic band (CI-NEB) algorithm is employed to identify
the transition state structures65.

BEH are calculated using Eq. (1), where EH/support is the energy of the total H/
support system, Esupport is the energy of the metal alloy support, and EH is the
energy of an isolated H atom.

BEH ¼ EH=support � Esupport � EH ð1Þ
The surface segregation energy in the dilute limit, SE, is defined as the energy

difference of moving the single impurity from the bulk to the surface. In this work,
it is calculated using Eq. (2), where Etop-layer and Enth-layer correspond to the total
RPBE energies of the slab with the impurity in the top and nth surface layer,
respectively. The value of n is chosen so that the energy difference between Enth-layer
and E(n−1)th-layer is less than 0.05 eV.

SE ¼ Esurface � Enth�layer ð2Þ
The surface segregation energy when surface H adatom is present (the H is put

at the most stable adsorption site for each system), SEH, is calculated using Eq. (3).

SEH ¼ SEþ ΔEH; ð3Þ
where ΔEH = BEH-top-layer – BEH-pure is the H adatom-induced segregation energy
change.

Here BEH-top-layer and BEH-pure are the hydrogen adatom binding energies with
the impurity in the top layer and the BEH of the pure system without impurity.
Thus, the SEH can be derived from the models of SE and BEH.

Using first-principles inputs as training data, we have employed SISSO to single
out a physically interpretable descriptor from a huge number of potential candi-
dates. In practice, a huge pool of more than 10 billion candidate descriptors is first
constructed iteratively by combining user-defined primary features with a set of
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mathematical operators. The number of times the operators are applied determines
the complexity of the resulting descriptors. We consider up to three levels of
complexity (feature spaces) Φ1, Φ2, and Φ3. Note that a given feature space Φn also
contains all of the lower rung (i.e., n− 1) feature spaces. Subsequently, the desired
low-dimensional representation is obtained from this pool49. The details of the
feature space (Φn) construction and the descriptor identification processes can be
found in the Supplementary Methods. The proper selection of primary features is
crucial for the performance of SISSO-identified descriptors. Inspired by previous
studies31,38, we consider three classes of primary features (see Table 1) related to
the metal atom, bulk, and surface. The more detailed description and values of all
the primary features are given in the Supplementary Table 2, Supplementary
Table 3, Supplementary Data 1, and Supplementary Data 2.

The selection of the promising candidates at various temperatures and hydrogen
partial pressures is performed based on ab initio atomistic thermodynamics66. H
adsorption/desorption on SAAC surfaces as a function of temperature and H2

partial pressure (T, p) is characterized by the free energy of adsorption ΔG:

ΔG ¼ EH=support � Esupport � μH T; pð Þ ð4Þ
with the chemical potential of hydrogen μH ¼ 1

2 μH2
obtained from:

μH ¼ 1
2

EH2
þ ΔμH2

T; pð Þ
� �

; ð5Þ
where ΔμH2

T; pð Þ ¼ μH2
T; p0ð Þ � μH2

T0; p0ð Þ þ kBT lnð pp0Þ.
Here T0 = 298 K and p0 = 1 atm. The frst two terms are taken from JANAF

thermochemical tables67. In the following, we set p= 1 atm.
According to Sabatier principle the optimum heterogeneous catalyst should bind

the reactants strong enough to allow for adsorption, but also weak enough to allow
for the consecutive desorption25. In this work, a BEH range is defined by the
conditions:

jBEH � 1
2
ðEH2

� 2EHÞ �
1
2
ΔμH2

Tð Þj<0:3 eV; ð6Þ
where EH2

� 2EH is the hydrogen binding energy of the hydrogen molecule. The
experimental value of −4.52 eV68 was used in this work.

The above conditions correspond to the free-energy bounds:

jΔGj<0:3 eV; ð7Þ
Conditions on energy barrier (Eb) are defined by considering Arrhenius-type

behaviour of the reaction rate on Eb and T. Assuming that acceptable barriers are
below 0.3 eV for T0 = 298 K, we estimate acceptable barrier at any temperature as:

Eb<
0:3T
T0

eV: ð8Þ
Similarly the bounds for SEH are determined by imposing a minimum 10% ratio

for top-layer to subsurface-layers dopant concentration by assuming an Arrhenius-
type relation with SEH interpreted as activation energy:

SEH < kBT ln 10ð Þ: ð9Þ
The subgroup discovery was performed using RealKD package (https://

bitbucket.org/realKD/realkd/). Each feature was split to 15 subsets using 15-means
clustering algorithm. The borders between adjacent data clusters (a1, a2,…) are
applied further for construction of inequalities (feature1 < a1), (feature2 ≥ a2), etc.
While final result might depend on the number of considered clusters, in our
previous study we found that relatively high numbers of considered clusters pro-
vide essentially the same result60. The candidate subgroups are built as conjunc-
tions of obtained simple inequalities. The main idea of SGD is that the subgroups
are unique if the distribution of the data in them is as different as possible from the
data distribution in the whole sampling. Here the data distribution is the dis-
tribution of a target property (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔG2 þ E2

b

p
, SE, Eb, |ΔG|, and BEH). The uniqueness

is evaluated with a quality function. In this study we used the following function:

Q Sð Þ ¼ s Sð Þ
s Pð Þ

med Pð Þ �med Sð Þ
med Pð Þ �min Pð Þ

� �
1� amd Sð Þ

amd Pð Þ
� �

ð10Þ

with S—subgroup, P—whole sampling, s—size, med and min—median and
minimal values of a target property, amd—absolute average deviation of the data
around the median of target property. With this function the algorithm is searching
for subgroups with lower values of target properties. The search was done with an
adapted for such purposes Monte-Carlo algorithm59, in which first a certain
number of trial conjunctions (seeds) is generated. Afterwards, for each seed
(accompanied with pruning of inequalities) the quality function is calculated. We
have tested here several numbers of initial seeds: 10,000, 30,000, 50,000, and
100,000. The subgroups with the overall high quality function value were selected.

Data availability
All relevant data are available from the corresponding authors upon reasonable request.

Code availability
FHI-aims: https://aimsclub.fhi-berlin.mpg.de.
SISSO: https://github.com/rouyang2017/SISSO.
SGD: https://bitbucket.org/realKD/realkd/.
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Supplementary Methods 

All ab initio calculations were performed with the revised Perdew-Burke-Ernzerhof (RPBE) 

functional1 as implemented in the all-electron full-potential electronic-structure code FHI-aims2 

using density-functional theory (DFT) and numerical atom-centered basis functions. Light 

numerical settings are used which are tested to be converged compared to tight numerical settings, 

resulting in accuracy in total energy differences within 0.05 eV per supercell. The choice of 

functional is validated based on a comparison of calculated H2 adsorption energies to the available 

experimental results3 (Supplementary Table 1). Spin-polarization effects are tested and included 

where appropriate for the system with Fe, Co, and Ni atoms. Slabs of at least nine metal layers 

were considered with the two to four bottom layers fixed, based on the convergence of BEH and 

SE (within 0.05 eV) with respect to the thickness and supercell size of the slab. The lattice vector 

along the direction parallel to the vacuum gap was 50 Å. All atoms in the systems except for the 

fixed bottom have been allowed to relax until the maximum remaining force fell below 10-2 eV/Å. 

The climbing-image nudged elastic band (CI-NEB) algorithm is employed to identify the transition 

state structures.4 H atom is placed at different non-equivalent high-symmetry sites close to the 

guest atom (Supplementary Figure 1), and the BEH for the most favorable site is included in the 

data set. The host metal surfaces considered in this work to construct the training data set are 

Cu(100), Cu(310), Zn(0001), Cr(110), Pd(111), Pd(211), Pt(111), Rh(111), Ru(0001), Cd(0001), 

Ag(100), Ag(110), Ti(0001), Nb(210), and Ta(210) with more than three hundred points for each 

considered properties. All the DFT calculated BEH, SE, and Eb can be found in the file 

“Supplementary Data 1”. 

 

For constructing the Φ1, Φ2, and Φ3 feature spaces we made use of the set of algebraic/functional 

operators given in eq. 1. 

 

Ĥ(m) ≡{+, −, ·, /, log, exp, exp−, −1, 2, 3, √, 3√, |−|},                     (1) 

mailto:S.Levchenko@skoltech.ru
mailto:gaoyi@zjlab.org.cn


The superscript m indicates that when applying Ĥ(m) to primary features φ1 and φ2 a dimensional 

analysis is performed, which ensures that only physically meaningful combinations are retained 

(e.g. only primary features with the same unit are added or subtracted). All primary features 

included in this study were obtained either from the literature (see Supplementary Table 2), or 

from DFT calculations (see Supplementary Table 3). The values of the primary features for the 

training data sets can be found in the file “Supplementary Data 1” and the values of the primary 

features for all the high-throughput screening SAAC candidates can be found in the file 

“Supplementary Data 2”. 

 

The sparsifying ℓ0 constraint is applied to a smaller feature subspace selected by a screening 

procedure (sure independence screening (SIS)), where the size of the subspace is equal to a user-

defined SIS value times the dimension of the descriptor. The SIS value is not an ordinary 

hyperparameter and its optimization through a validation data set is not straightforward. Ideally, 

one would want to search the entire feature space for the optimal descriptor. However, this is not 

computationally tractable since the computational cost of the sparsifying ℓ0 constraint grows 

exponentially with the size of the searched feature space. Instead, the SIS value should be chosen 

as large as computationally possible. The reasonable SIS values were chosen based on the 

convergence of the training error. 

 

To confirm the reliability of the SISSO model optimization approaches, the data were initially 

divided into training and test sets. The Pd(211) and Pt(111) based systems are used as test set while 

all the other data were contained in the training set. As mentioned in the main text, 10-fold cross 

validation (CV10) method was used to determine the dimensionality of the descriptor. First, the 

best descriptors were selected by SISSO based on only the training data. The RMSR and CV10 

errors on the training set for the descriptors of BEH, Eb, and SE are displayed in Supplementary 

Figure 3a. Second, the predictive power of the SISSO selected descriptors was tested using the test 

set. We display in Supplementary Figure 3b the distribution of errors on the training set and test 

set for the descriptors of BEH (green box), Eb (blue box), and SE (cyan box). To check the 

predictive power of SISSO selected descriptors on different types of surfaces, we divide the test 

set into two groups: one with only flat surface and the other one with only stepped surface. In the 

first group, we considered a new transition metal of Pt which are not contained in the training set 

(Cu, Zn, Cr, Pd, Rh, Ru, Cd, Ag, Ti, Nb, and Ta), while in the second group, we considered a new 

surface cut of fcc(211) which is also not included in the training set. The root-mean-square errors, 

RMSEs, (maximum absolute errors, MAEs) of the SISSO selected descriptors for the test flat 

surface set are found to be BEH: 0.10 eV (0.43 eV), Eb: 0.12 eV (0.62 eV), and SE: 0.22 eV (0.78 

eV), while for the test stepped surface set are found to be BEH: 0.11 eV (0.54 eV), Eb: 0.14 eV 

(0.71 eV), and SE: 0.24 eV (0.87 eV). The moderate errors of the RMSEs for both test flat surface 

set and test stepped surface set showed that the transferability of the descriptors is good. The little 

larger RMSEs and MAEs for test stepped surface set compared to that for test flat surface set can 

be rationalized by the fact that in the training set, more flat surfaces are considered compared to 

stepped surfaces. We would expect the errors for the test set to further decrease when more data 

are included in the training set. Thus, after confirming the reliability of the of the SISSO model 

optimization approaches, finally we included all the data into the training set for the SISSO 

selection of the best descriptors. As mentioned in the main text, the obtained optimal descriptor 

dimensionalities for BEH, Eb, and SE of the SAACs are 5, 6, and 6, respectively. The same optimal 

descriptor dimensionalities for BEH, Eb, and SE were found when the Pt(111) and Pd(211) based 



systems are not included, further confirming the reliability the used SISSO model optimization 

approaches. The error distributions for all the lower dimensional models are displayed in 

Supplementary Figures 4-6. The RMSE and MAE of the models are also shown. The identified 

lower-dimensional descriptors and the coefficients and correlations in corresponding SISSO 

models for BEH, Eb, and SE are displayed in Supplementary Tables 4-6. The top five largest 

deviations between calculated and predicted BEH, Eb, and SE are collected in Supplementary Table 

7. As can be seen, the deviation for SE is larger than that of BEH and Eb. However, we found even 

for SEH our model’s precision is higher than 95% (Supplementary Table 8). 

 

Supplementary Table 1. The experimental and theoretical adsorption energies (in eV) of H2 at 

different transition metal surfaces. 

method Pt(111) Ru(0001) Pd(111) 

RPBE -0.56 -1.06  -1.01 

PBE -0.32 -0.78  -0.70 

Experiments3 -0.75  -1.20 -0.91 

 



 
Supplementary Figure 1. The considered hydrogen adsorption sites on the fcc(111) (a), fcc(110) 

(b), fcc(100) (c), hcp(0001) (d), bcc(110) (e), fcc(211) (f), fcc(310) (g), bcc(210) (h) of pure 

transition metal surfaces. The atom below the top site for each surface facet is either the host atom 

(pure transition metal surfaces) or the single guest atom (single atom alloy metal surfaces). 

 



 
Supplementary Figure 2. Correlation between H-atom binding energy BEH and the d-band center 

for Pt(111) based SAACs. 

 

Supplementary Table 2. Primary features obtained from the literature.5 Electron affinity (EA in 

eV), ionization potential (IP in eV), and covalent radius (R) of the metal atom. 

system class name abbreviation 

host  atomic Electron affinity EA* 

Ionization potential IP* 

Atomic radius R* 

guest atom atomic Electron affinity EA 

Ionization potential IP 

Atomic radius R 

 

 

 

 

 

Supplementary Table 3. Primary features obtained from DFT-RPBE calculations (spin-

polarization effects are tested for and included where appropriate). Energy of the highest-occupied 

Kohn-Sham level (H in eV), energy of the lowest-unoccupied Kohn-Sham level (L in eV), binding 

energy of H with isolated metal atom (EH in eV as calculated by equation (2)), binding energy of 



metal dimers (EB in eV as calculated by equation (3)), binding distance of H with isolated metal 

atom (dH in Å), and binding distance of metal dimers of the metal atom; cohesive energy (EC in 

eV as calculated by equation (4)) and d-band center (DC in eV) of the bulk metal; d-band center 

of the top surface layer (DT in eV), d-band center of the subsurface layer (DS in eV), and the slab 

Fermi level (F in eV) of the metal surface. 

system class name abbreviation 

host atomic Energy of the highest-occupied Kohn-Sham level H* 

Energy of the lowest-unoccupied Kohn-Sham level L* 

Binding energy of H with single host metal atom EH* 

Binding energy of host metal dimers EB* 

Binding distance of H with single host metal atom dH* 

Binding distance of host metal dimer dd* 

bulk Cohesive energy EC* 

d-band center DC* 

surface#  d-band center of the top surface layer DT* 

d-band center of the subsurface layer DS* 

Slab Fermi level F* 

guest atom atomic Energy of the highest-occupied Kohn-Sham level H 

Energy of the lowest-unoccupied Kohn-Sham level L 

Binding energy of H with single guest metal atom EH 

Binding energy of guest metal dimers EB 

Binding distance of H with single guest metal atom dH 

Binding distance of guest metal dimers dd 

bulk Cohesive energy EC 

d-band center DC 

#the surface based primary features were calculated by using the unit cell consisting of one atom 

per atomic layer. 

EH = EH-metal – Emetal – EH                     (2) 

where EH-metal is the energy of the total H-metal system, Emetal is the energy of the isolated metal 

atom, and EH is the energy of the isolated H atom. 

EB = Edimer – 2Esingle                        (3) 

where Edimer is the energy of the total metal-metal dimer system, Esingle is the energy of the isolated 

metal atom. 

EC = Ebulk/n – Esingle                           (4) 

where Ebulk is the energy of the bulk metal system, Esingle is the energy of the isolated metal atom, 

and n is the number of metal atoms in the bulk unit cell. 

 



 
Supplementary Figure 3. (a) RMSE and the averaged RMSE of the 10 fold cross-validation. (b) 

Box plots of the absolute errors for the training set and test set for the SISSO selected best models 

of BEH (green), Eb (blue), and SE (cyan). The test set is divided into two parts: one part contains 

only flat surfaces and the other one contains only stepped surfaces. The upper and lower limits of 

the rectangles represent the 75th and 25th percentiles of the distribution, the internal horizontal 

lines mark the median (50th percentile), and the upper and lower limits of the error bars indicate 

the 99th and 1st percentiles. The crosses depict the maximum absolute errors. 

 

 
Supplementary Figure 4. The error distributions for all the lower-dimensional models of BEH: 

(a) 1D, (b) 2D, (c) 3D, and (d) 4D, and the SISSO selected best model (e) 5D. 

Supplementary Table 4. The identified descriptors and the coefficients and correlations for all 

the lower-dimensional models of BEH. 



𝑑𝑚  descriptor coefficient correlation 

𝑑1  𝑑1
1 (EA*+2F*−EC)∙DT*∙EH*/(EC*+F*) 0.12286E+00 0.8964 

𝑑2  𝑑1
2 (EA*+2F*−EC)∙DT*∙EH*/(EC*+F*) 0.12093E+00 0.8964 

 𝑑2
2 √DC

3
∙H*∙DT*∙(|EA*−EH*|−|EC−EC*|) -0.20756E-02 0.5891 

𝑑3  𝑑1
3 (EA*+2F*−EC)∙DT*∙EH*/(EC*+F*) 0.12393E+00 0.8964 

 𝑑2
3 √DC

3
∙H*∙DT*∙(|EA*−EH*|−|EC−EC*|) -0.19673E-02 0.5891 

 𝑑3
3 |EH*−L*−|EH−F*||/(DC2+EC∙EC*) -0.56460E+00 0.4850 

𝑑4  𝑑1
4 (EA*+2F*−EC)∙DT*∙EH*/(EC*+F*) 0.11932E+00 0.8964 

 𝑑2
4 √DC

3
∙H*∙DT*∙(|EA*−EH*|−|EC−EC*|) -0.18876E-02 0.5891 

 𝑑3
4 |EH*−L*−|EH−F*||/(DC2+EC∙EC*) -0.60955E+00 0.4850 

 𝑑4
4 |IP*∙F*/(EH+F*)−|EC*−DS*|−|DC*−F*|| 0.31619E-01 0.3864 

𝑑5  𝑑1
5 (EA*+2F*−EC)∙DT*∙EH*/(EC*+F*) 0.12653E+00 0.8964 

 𝑑2
5 √DC

3
∙H*∙DT*∙(|EA*−EH*|−|EC−EC*|) -0.20440E−02 0.5891 

 𝑑3
5 |EH*−L*−|EH−F*||/(DC2+EC∙EC*) -0.50891E+00 0.4850 

 𝑑4
5 |EH−F*−EH*|−|EC*−EC−|DT*−F*|| 0.34705E−01 0.3849 

 𝑑5
5 L∙EC∙(EA*+DS*−|H−EH|/|L*−EH*| -0.48772E−04 0.3862 

 

 
Supplementary Figure 5. The error distributions for all the lower dimensional models of Eb: (a) 

1D, (b) 2D, (c) 3D, (d) 4D, (e) 5D and the SISSO selected best model (f) 6D. 

 

 

 

Supplementary Table 5. The identified descriptors and the coefficients and correlations for all 

the lower-dimensional models of Eb. 



𝑑𝑚  descriptor coefficient correlation 

𝑑1  𝑑1
1 ((IP*−L)−|EC*−DT*|)/|EC/DC−L*/IP*| 0.92945E-01 0.7643 

𝑑2  𝑑1
2 ((IP*−L)−|EC*−DT*|)/|EC/DC−L*/IP*| 0.98762E-01 0.7643 

 𝑑2
2 (EA*+DC*+|DC−DT*|)/(EA*+EH*+|L*−F*|) -0.23925E-01 0.5726 

𝑑3  𝑑1
3 ((IP*−L)−|EC*−DT*|)/|EC/DC−L*/IP*| 0.91192E-01 0.7643 

 𝑑2
3 (EA*+DC*+|DC−DT*|)/(EA*+EH*+|L*−F*|) -0.22522E-01 0.5726 

 𝑑3
3 (DC+EH*)∙(EC*−F*)∙(|L−EC|−|EC−EH|) -0.14550E-01 0.4568 

𝑑4  𝑑1
4 ((IP*−L)−|EC*−DT*|)/|EC/DC−L*/IP*| 0.90281E-01 0.7643 

 𝑑2
4 (EA*+DC*+|DC−DT*|)/(EA*+EH*+|L*−F*|) -0.21259E-01 0.5726 

 𝑑3
4 (DC+EH*)∙(EC*−F*)∙(|L−EC|−|EC−EH|) -0.14089E-01 0.4568 

 𝑑4
4 (DT*−EH)∙DC∙(H/EC+EA*/L*)/EC* -0.18463E-01 0.4414 

𝑑5  𝑑1
5 ((IP*−L)−|EC*−DT*|)/|EC/DC−L*/IP*| 0.84777E-01 0.7643 

 𝑑2
5 (EA*+DC*+|DC−DT*|)/(EA*+EH*+|L*−F*|) -0.18289E-01 0.5726 

 𝑑3
5 (DC+EH*)∙(EC*−F*)∙(|L−EC|−|EC−EH|) -0.13888E-01 0.4568 

 𝑑4
5 (DT*−EH)∙DC∙(H/EC+EA*/L*)/EC* -0.19258E-01 0.4414 

 𝑑5
5 DC2∙DT*/IP∙(L*−DS*+|H*−EC*|) -0.57167E-02 0.3975 

𝑑6  𝑑1
6 ((IP*−L)−|EC*−DT*|)/|EC/DC−L*/IP*| -0.87339E−01 0.7643 

 𝑑2
6 (EA*+DC*+|DC−DT*|)/(EA*+EH*+|L*−F*|) -0.19577E−01 0.5726 

 𝑑3
6 (DC+EH*)∙(EC*−F*)∙(|L−EC|−|EC−EH|) -0.13173E−01 0.4568 

 𝑑4
6 (DT*−EH)∙DC∙(H/EC+EA*/L*)/EC* -0.19172E−01 0.4414 

 𝑑5
6 eEC∙EH∙DS*/((L*−DS*)+|H*−EC*|) 0.33549E−01 0.3768 

 𝑑6
6 DC2∙(EC*−F*)/(DT*−F*−EA+EC) -0.14362E−02 0.3643 

 



 
Supplementary Figure 6. The error distributions for all the lower dimensional models of SE: (a) 

1D, (b) 2D, (c) 3D, (d) 4D, (e) 5D and the SISSO selected best model (f) 6D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 6. The identified descriptors and the coefficients and correlations for all 

the lower-dimensional models of SE. 

𝑑𝑚  descriptor coefficient correlation 

𝑑1  𝑑1
1 (EC+IP+|F*−DT*|)/(IP*/R+H*/dd*) -0.75479E+00 0.8969 

 

𝑑2  𝑑1
2 (EC+IP+|F*−DT*|)/(IP*/R+H*/dd*) -0.75372E+00 0.8969 

 

 𝑑2
2 |DC−EB*|∙(L−DC−EC)/EB2 0.21861E+00 0.5346 

𝑑3  𝑑1
3 (EC+IP+|F*−DT*|)/(IP*/R+H*/dd*) -0.81257E+00 0.8969 

 

 𝑑2
3 |DC−EB*|∙(L−DC−EC)/EB2 0.24095E+00 0.5346 

 𝑑3
3 ||EC*−L*|+|DC−DS*|−|DC−F*|−|EC−F*|| 0.12052E+00 0.5386 

𝑑4  𝑑1
4 (EC+IP+|F*−DT*|)/(IP*/R+H*/dd*) -0.82171E+00 0.8969 

 

 𝑑2
4 |DC−EB*|∙(L−DC−EC)/EB2 0.30402E+00 0.5346 

 𝑑3
4 ||EC*−L*|+|DC−DS*|−|DC−F*|−|EC−F*|| 0.11671E+00 0.5386 

 𝑑4
4 |H−IP−L+IP*|/((DC/EC)+(EC/H)) 0.16261E+00 0.3913 

𝑑5  𝑑1
5 (EC+IP+|F*−DT*|)/(IP*/R+H*/dd*) -0.82332E+00 0.8969 

 

 𝑑2
5 |DC−EB*|∙(L−DC−EC)/EB2 0.30382E+00 0.5346 

 𝑑3
5 ||EC*−L*|+|DC−DS*|−|DC−F*|−|EC−F*|| 0.10926E+00 0.5386 

 𝑑4
5 |H−IP−L+IP*|/((DC/EC)+(EC/H)) 0.16324E+00 0.3913 

 𝑑5
5 (F*−EC)∙(L*−DT*−IP)/(F*−EB*) -0.55996E-02 0.3982 

𝑑6  𝑑1
6 (EC+IP+|F*−DT*|)/(IP*/R+H*/dd*) -0.82665E+00 0.8969 

 

 𝑑2
6 |DC−EB*|∙(L−DC−EC)/EB2 0.30742E+00 0.5346 

 𝑑3
6 ||EC*−L*|+|DC−DS*|−|DC−F*|−|EC−F*|| 0.11317E+00 0.5386 

 𝑑4
6 |H−IP−L+IP*|/((DC/EC)+(EC/H)) 0.17455E+00 0.3913 

 𝑑5
6 (F*−EC)∙(L*−DT*−IP)/(F*−EB*) -0.51761E−02 0.3982 

 𝑑6
6 EC*∙DC∙(EB*−L)∙(L+L*−EC−DS*) -0.80032E−03 0.3379 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Table 7. The top five largest deviations between calculated and predicted BEH 

(in eV), Eb (in eV), and SE (in eV). 

property system calculated predicted deviation 

BEH Co/Ag(100) -2.98 -2.60 0.38 

Co/Ag(110) -2.98 -2.65 0.33 

Ni/Ti(0001) -2.95 -3.27 0.33 

Ta/Ti(0001) -3.19 -2.89 0.30 

Sc/Zn(0001) -1.91 -2.21 0.30 

Eb Hf/Pt(111) 0.78 0.38 0.40 

Cu/Ag(110) 0.92 0.52 0.40 

Ir/Zr(0001) 0.68 0.28 0.40 

Pd/Ag(110) 0.60 0.24 0.36 

Zr/Cu(100) 0.71 0.38 0.33 

SE V/Pd(111) -0.27 0.46 0.73 

Hg/Zn(0001) -0.24 0.48 0.71 

Os/Zn(0001) 0.96 0.25 0.71 

Cd/Zn(0001) -0.13 0.50 0.62 

Hg/Cd(0001) -0.19 0.43 0.62 

 

Supplementary Table 8. Number of systems with the predicted and calculated SEH that meet the 

same condition of SEH < kTln(10) (Nmeet), the total number of calculated systems (Ntotal), and the 

SE model’s precision (P = Nmeet/ Ntotal). 

temperature  Nmeet Ntotal P 

200 K 345 360 95.83% 

700 K 346 360 96.11% 

 



 



Supplementary Figure 7. High-throughput screening of SAACs for (a) BEH, (b) Eb, and (c) SEH. 

The screened candidates are highlighted in (d). Vertical axis displays the guest atom type, and the 

vertical horizontal axis displays the host metal surfaces with different stepped surface cuts. 

 

 
Supplementary Figure 8. Stability vs. activity map for stepped SAACs surfaces at 𝑇 = 298 𝐾 

and 𝑝 = 1 atm. The SEH on y-axis represents stability and activity parameter √∆𝐺2 + 𝐸b
2  is 

shown on x-axis. 

 



 
Supplementary Figure 9. Stability vs. activity map for SAACs surfaces at 𝑇 = 298 𝐾 and 𝑝 = 1 

atm. The SEH on y-axis represents stability and activity parameter √∆𝐺2 + 𝐸b
2 is shown on x-

axis. 

 

Supplementary Table 9. The aggregation energies (EA, in eV) for Mn/Ag(111), Pt/Zn(0001), and 

the experimentally established SAACs. 

System

s 

Mn/Ag(111

) 

Pt/Zn(0001

) 

Pd/Cu(111

) 

Pt/Cu(111

) 

Pd/Au(111

) 

Pt/Au(111

) 

Au/Ru(111

) 

Ni/(Zn(0001

) 
EA 2.43 0.29 0.12 0.17 0.08 0.03 -0.16 0.16 

The aggregation energies were calculated as the formation energy of guest atom dimer from 

isolated single guest atom. Positive values mean repulsive interactions between the two guest 

atoms.  

 



 
Supplementary Figure 10. The distribution of data samples for segregation energies (left) and H2 

dissociation energy barriers (right) in the whole sampling and obtained subgroups from SGD 

minimization of SE and √∆𝐺2 + 𝐸b
2. 

 

 
Supplementary Figure 11. The distribution of data samples for SE (a) and SEH (b) for the 

subgroup (-2.35 eV ≤ EH* ≤ -2.32 eV) AND (EC* > -2.73 eV) AND (EC < -5.98 eV) AND (H 

≥ -5.12 eV) obtained from SGD minimization of SEH – SE.  

 

 

Supplementary References 

1. Hammer, B., Hansen, L.B. & Nørskov, J.K. Improved adsorption energetics within density-

functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B 

59, 7413 (1999). 



2. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. 

Computer Physics Communications 180, 2175-2196 (2009). 

3. Silbaugh, T.L. & Campbell, C.T. Energies of formation reactions measured for adsorbates 

on late transition metal surfaces. The Journal of Physical Chemistry C 120, 25161-25172 

(2016). 

4. Henkelman, G., Uberuaga, B.P. & Jónsson, H. A climbing image nudged elastic band 

method for finding saddle points and minimum energy paths. The Journal of Chemical 

Physics 113, 9901-9904 (2000). 

5. Dean, J.A. Lange's handbook of chemistry. (New york; London: McGraw-Hill, Inc., 1999). 

 

 



Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
This interesting work leverages the recently developed SISSO (sure independence screening and 
sparsifying operator) algorithm to develop descriptors of stability and activity for screening single 
atom alloy catalysts (SAACs). The main impact of the work seems to be in identifying a number of 
new SAACs for potential experimental study. Two SAACs (Mn/Ag(111) and Pt/Zn(0001)) are 
identified as particularly promising. The paper is application-based in nature and doesn’t appear to 
contribute significant conceptual advances for SAACs or machine learning applications. While the 
work seems to be well done and the paper is well-written, and the SAAC and ML topics are of great 
interest these days, the paper scope is not particularly ambitious. This work may be suitable for 
Nat. Comm. if its scope is slightly broadened and fundamental insight is improved. My comments 
and suggestions are provided below. 
 
• Page 3: Figure 1a shows the H-atom binding energy vs. the d-band center for the Ag(110) host 
surface. The d-band center is typically calculated from the projected DOS, and it is unclear which 
surface atom the d-states are being taken from based on the text. Please clarify. Furthermore, 
using the Ag(110) surface to show that the d-band model is broken because of SAACs is not very 
convincing. Ag(110) should not follow the d-band model due to the fact that it’s d-band is 
completely full; therefore binding trends on Ag(110) should depend more on changes in sp 
electron density and Pauli repulsion (see DOI: https://link.springer.com/chapter/10.1007/978-94-
015-8911-6_11 for details on why Ag(110) should not follow the d-band model). Do you have 
other examples of SAAC breaking scaling relations besides a host metal with a full d-band? 
 
• Page 6: The manuscript may benefit from some discussion on the robustness of the SISSO 
models identified in Table 2. Does adding or removing a training data point lead to a different 
descriptor? If so, does the new descriptor still yield similar model behavior? 
 
• Page 6: Can you comment at all on the relative importance of the primary features included in 
the model relative to their impact on the overall prediction? This may lead to interesting general 
conclusions, like elucidating whether the primary features of the guest or host metal play a larger 
role for a given target property. Discussing the relative importance of guest vs. host metal 
features would be quite informative. 
 
• Page 7: It seems the authors identify Tc alloys as promising SAACs. It’s worth noting that there 
may be other health/safety considerations when using Tc in catalytic applications due to the fact 
that all Tc isotopes are radioactive. 
 
• Page 8: I believe that the manuscript would benefit from an expanded discussion of Figure 3 that 
explains the general trends that emerge from the high-throughput screening results (e.g., in 
general, what types of guest atoms yield SAACs with low hydrogen dissociation barriers? What 
guest/host combinations lead to small segregation energies and why in terms of atomic radii size 
or other features?) 
 
 
Minor Comments Main Text 
• Figure 1: If you change solid red circles to be different symbols for hollow bridge, bridge, top 
that would be more information-rich and potentially informative (just a suggestion). 
• Table S1 caption. “the surface-based primary features were calculated using the slab unit cell 
consisting of one atom per atomic layer.” Should be “The”. 
• Page 6: The text indicates that the primary features DC, DC*, DT, DT*, DS, and DS* appear in 
every dimension of the descriptors for hydrogen binding energy and dissociation barrier. However, 
based on Table 1, it is unclear what the DT and DS primary features are as opposed to the DT* 
and DS* primary features. From reading the SI, it seems * denotes host metal from guest atom 
feature. I think this * notation can be clarified in Table 1. 
• Page 9: “higher stability and efficiency than the reported ones, making them perfectly optimized 
for practical applications.” Perfectly optimized seems to be a strong choice of words here. Perhaps 
remove the word “perfectly”. 



 
 
Minor Comments on Supporting Information 
• Page 1: “Spin-polarization effects are tested for and included where appropriate.” Is it noted 
somewhere for which spin polarization effects are included? This is a vague statement and could 
perhaps be made more explicit 
• Figure S1 caption. “bcc(110) e,” should be bcc(110) (e) 
• Table S3: “Binding energy of host metal dimers”, So this is a dimer energy for A(g) + A(g) -> 
A2(g)? Could perhaps be clarified. 
• Font size for the captions in Figures S3-S5 are smaller than the other Figure S captions (i.e., font 
size 10 vs. 12). 
• Table S5: “Number of system with the predicted and calculated segregation energy meet the 
same condition of SE < kTln(10) (Nmeet)…” Perhaps it should read as “Number of systems with 
the predicted and calculated segregation energies that meet the same condition…” 
 
 
 
Reviewer #2 (Remarks to the Author): 
 
The manuscript presents machine learning models of single atom catalysts and screening 
procedure for design of hydrogenation catalysts based on this new type of alloys emerged in 
recent years. The features designed are easily available properties that are tabulated including 
electronic structure, bulk properties, etc. The target properties include the binding energy, 
activation barrier and the segregation. Those properties are crucial for screening high performance 
hydrogenation catalysts. While the work is thoroughly done in those aspects, this does not reach 
the standard of Nat Commu. 
1. The novelty of the approach is lacking. Compressed sensing is used recently in M. Andersen, S. 
V. Levchenko, M. Scheffler, K. Reuter, Beyond Scaling Relations for the Description of Catalytic 
Materials. ACS Catal. 9, 2752–2759 (2019). 
2. While the SISSO with cross validation is reasonably accurate for training a small dataset, its 
generalization to new systems is still the biggest problems for all current learning framework. 
Active learning approach was used to tackle this problem (K. Tran, Z. W. Ulissi, Active learning 
across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. 
Nature Catalysis. 1, 696–703 (2018).), while a large amount of calculations are required. The 
current study used only ~300 datapoints for training and extend the model to ~5000 space 
without validation of model prediction. 
3. The criteria for screening catalysts used in this study is arbitrary. Without detailed kinetics, the 
approach can only provide a rough screening of candidate materials. 
4. For segregation, a recent study by Grabow et al. (K. K. Rao, Q. K. Do, K. Pham, D. Maiti, L. C. 
Grabow, Extendable Machine Learning Model for the Stability of Single Atom Alloys. Top. Catal. 
(2020), doi:10.1007/s11244-020-01267-2.). Even the *H binds weakly on the metals, its effect on 
the segregation is not considered in any of those studies. 
5. The most fundamental problem of this study and the approach in general is their lacking of 
understanding the uniqueness of single atom alloys. Although the SISSO method comes up 
formula in reduced feature space, the physics is missing. The message to the community by the 
study is rather incremental while does not provide a way forward to tackle all those issues. 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors report the use of modern data analytics towards the reliable prediction of activity and 
stability of dilute alloy “single atom catalysts” for hydrogenation. The topic of particular interest as 
single atom catalysts have made massive strides for oxidation reactions but have had limited 
success for reductions particularly due to lack of activity and/or abysmal stability. The strength of 
the authors approach is that it addresses catalyst screening beyond the simple approximation BEP, 
d-band center etc. etc. etc. These concepts are embedded in the psyche of computational catalysis 
so deep that we forget they are simple models and, in many instances, to too simple for 
quantitative predictions-but excellent for rationalizations on small data sets. 
 



The authors show that by assembling a large number of atomic, bulk and allow descriptors 
(table1) they are able to perform a high dimensional correlation with the ab initio data to yield 
property predictions FAR more accurate than the existing simple concepts. On the one hand this is 
a great step forward for screening studies on the other hand if I have a more complex fitting 
function, I do expect a better fit. The one worry I have is this then become a brute force approach 
without the intellectual understanding that can be provided by a simple model. In this respect it 
might have been more intellectually pleasing for the authors to consider if there was a smaller 
subset of parameters (2-3) that might do a reasonable job (better than linear fits but not the full-
blown set) which might hint at a simpler model. As is, the approach is fine I do worry about both 
overfitting/underfitting of data but do believe the authors have covered this ground adequately. 
 
Finally, then the result of this study is that using their model they can rapidly predict the results of 
DFT calculations and use that data to make predictions about activity and stability based on simple 
energetic parameters such as presented in Figure 4. In my opinion this is the most important plod 
tin the whole paper and the authors did not really deal with its ramifications very well. The wisdom 
in single atom catalysts (particularly for hydrogenation) is that the more active the species the less 
stable if will be-hence the scarcity of single atoms (dilute alloys) that are reported. If the authors 
are correct there is a large abundance of materials far in the lower right-hand corner (active and 
stable) that should break this trend whereas those that do exist are mostly in the upper right-hand 
corner (active but less stable). This is the most significant discovery/prediction in the paper as far 
as I am concerned, and the authors barely comment on it. Sadly, a follow-on experimental study 
making targets and validating the prediction would be a breakthrough and this is also not done. 
 
Ultimately my problem is that screening for screening sake, without understanding new things, 
and without verifying that my parameters to define the screening criteria are valid is a reasonable 
technical accomplishment and not consistent with an advance I would expect in a Nature Journal. I 
think this paper would be highly appropriate for a journal such as ACS catal or a chem-informatics 
journal but other than a more advanced fitting procedure for predicting DFT data I see no real 
advance here. 



Response to Referees 

 
Reviewer 1: This interesting work leverages the recently developed SISSO (sure independence 
screening and sparsifying operator) algorithm to develop descriptors of stability and activity for 
screening single atom alloy catalysts (SAACs). The main impact of the work seems to be in 
identifying a number of new SAACs for potential experimental study. Two SAACs (Mn/Ag(111) and 
Pt/Zn(0001)) are identified as particularly promising. The paper is application-based in nature and 
doesn’t appear to contribute significant conceptual advances for SAACs or machine learning 
applications. While the work seems to be well done and the paper is well-written, and the SAAC and 
ML topics are of great interest these days, the paper scope is not particularly ambitious. This work 
may be suitable for Nat. Comm. if its scope is slightly broadened and fundamental insight is 
improved. My comments and suggestions are provided below. 
 
Response: We thank the reviewer for the positive comments on our work. Indeed, by identifying the 
model with both the activity and stability parameters of the SAACs we could confirm the 
experimentally studied high performance SAACs. Moreover, we predict two new particularly 
promising systems. Keeping the reviewer’s suggestions in mind, in the revised manuscript we now 
analyze the correlations of each component of the selected best descriptor with the target properties 
and discuss their physical significance. We also highlight the importance of using the combination of 
features rather than focusing on individual feature’s role in the description of the target properties. 
Thus, we have stepped beyond the well-established d-band center theory, scaling relationships, and 
the Brønsted-Evans-Polanyi relationship, and have focused on the importance of data analytics in 
finding new SAACs. 
 
1) Page 3: Figure 1a shows the H-atom binding energy vs. the d-band center for the Ag(110) host 
surface. The d-band center is typically calculated from the projected DOS, and it is unclear which 
surface atom the d-states are being taken from based on the text. Please clarify. Furthermore, using 
the Ag(110) surface to show that the d-band model is broken because of SAACs is not very 
convincing. Ag(110) should not follow the d-band model due to the fact that it’s d-band is completely 
full; therefore binding trends on Ag(110) should depend more on changes in sp electron density and 
Pauli repulsion (see DOI: https://link.springer.com/chapter/10.1007/978-94-015-8911-6_11 for 
details on why Ag(110) should not follow the d-band model). Do you have other examples of SAAC 
breaking scaling relations besides a host metal with a full d-band? 
 
Response: We thank the reviewer for highlighting this important aspect. In the present study, the 
d-band centers are calculated from the d orbitals projected on the single guest atom only. Note that, 
to validate the choice of our d-band centers, we have calculated d-band centers for the d orbitals 
projected on (i) the single guest atom and it’s 1st nearest neighbor shell and (ii) the whole slab. 
However, the correlation between the binding energy and these later two d-band centers are found to 
be worse compared to the d-band center of the single guest atom. This is now clarified in the revised 
manuscript [page 3].  
In the revised manuscript we have included the correlations between the binding energy and the 
d-band center for another system as well [Pt(111) surface], whose d-band is not completely full. 



 
Changes made: 
1. We have replaced the sentence “we first investigate correlation between BEH and the d-band 

center for the alloyed systems” by “we first investigate correlation between BEH and the d-band 
center for the alloyed systems. Note that, d-band centers are calculated from the d orbitals 
projected on the single guest atom only. We find that this way of calculating d-band center 
provides better correlation with other properties than d-band centers for the d orbitals projected 
on (i) the single guest atom plus it’s 1st nearest neighbor shell or (ii) the whole slab [Topics in 
Catalysis 61, 462-474 (2018)].” on page 3 of the revised manuscript. 

2. We have added Figure S2 by including also the system of Pt(111) surfaces which is reproduced 
as Figure R1 below. 

 

 
Figure R1. Correlation between (a) H-atom binding energy BEH and the d-band center and (b) the 
H2 dissociation energy barrier Eb and the H2 dissociation reaction energy for Pt(111) based SAACs. 
 
2) Page 6: The manuscript may benefit from some discussion on the robustness of the SISSO models 
identified in Table 2. Does adding or removing a training data point lead to a different descriptor? If 
so, does the new descriptor still yield similar model behavior? 
 
Response: The descriptor is robust and remains unchanged upon randomly removing one training 
data point. We have randomly kept out one data point for each model and have repeated the process 5 
times to check the robustness of the descriptor. Moreover, for the optimal dimensionality, the same 
set of primary features is found during CV10 in 9, 8, and 8 cases for the SISSO models of BEH, Eb, 
and SE, respectively. Also, new systems that were not included in the training set were used as test 
set to further confirm the high transferability of our model. Finally, some of the high-throughput 
screening selected high performance SAACs, including all the experimentally evidenced systems and 



our suggested top two best systems, are validated confirmed by density-functional theory 
calculations. 
 
Changes made: 
We have added the sentence “For the optimal dimensionality, the same set of primary features is 
found during CV10 in 9, 8, and 8 cases for the SISSO models of BEH, Eb, and SE, respectively” on 
page 6 of the revised manuscript. 
 
3) Page 6: Can you comment at all on the relative importance of the primary features included in the 
model relative to their impact on the overall prediction? This may lead to interesting general 
conclusions, like elucidating whether the primary features of the guest or host metal play a larger role 
for a given target property. Discussing the relative importance of guest vs. host metal features would 
be quite informative. 
 
Response: We thank the referee for this suggestion. In this work we highlight the importance of the 
combinations of the primary features rather than using each feature individually to describe the target 
properties. However keeping the referee’s advice in mind, we have now introduced a novel general 
approach to the analysis of complex symbolic-regression models, based on the data mining approach 
called subgroup discovery. This have allowed us to uncover physical role of particular features, as 
well as relative role of guest versus host features. 
 
Changes made: 
We have added the following paragraphs on page 10 and 11 of the revised manuscript. 
“Although the SISSO models are analytic formulas, the corresponding descriptors are complex, 
reflecting the complexity of the relationship between the primary features and the target properties. 
While potentially interpretable, the models do not provide a straightforward way of evaluating 
relative role of different features in actuating desirable changes in target properties. To facilitate 
physical understanding of the actuating mechanisms, we apply the subgroup discovery (SGD) 
approach.55-60 SGD finds local patterns in data that maximize a quality function. The patterns are 
described as an intersection (a selector) of simple inequalities involving provided features, e.g., 
(feature1<a1) AND (feature2>a2) AND... . The quality function is typically chosen such that it is 
maximized by subgroups balancing the number of data points in the subgroup, deviation of the 
median of the target property for the subgroup from the median for the whole data set, and the width 
of the target property distribution within the subgroup.60”  
 

“Here, we apply SGD in a novel context, namely as an analysis tool for symbolic regression 
models, including SISSO. The primary features that enter the complex SISSO descriptors of a given 
target property are used as features for SGD (see Table 2). The data set includes all 5200 materials 
and surfaces used in the high-throughput screening. The target properties are calculated using the 
obtained SISSO models. Five target properties are considered: ∆ + , SE, SEH, Eb, |∆ |, and 
BEH. Since we are interested mainly in catalysts that are active at normal conditions, ∆  is 
calculated at T = 300 K. Our goal is to find selectors that minimize these properties within the 
subgroup. Such selectors describe actuating mechanisms for minimization of a given target property. 
For SE, the following best selector is found: (EC* ≤ -3.85 eV) AND (-3.36 eV < EC ≤ -0.01 eV) 



AND (IP ≥ 7.45 eV). The corresponding subgroup contains 738 samples (14% of the whole 
population), and the distribution of SE within the subgroup is shown in Figure S10. Qualitatively, the 
first two conditions imply that the cohesive energy of the host material is larger in absolute value 
than the cohesive energy of the guest material. Physically this means that bonding between host 
atoms is preferred over bonding between guest atoms and therefore over intermediate host-guest 
binding. This leads to the tendency of maximizing number of host-host bonds by pushing guest atom 
to the surface. This stabilization mechanism has been discussed in literature,61 and here we confirm it 
by data analysis. In addition, we find that stability of SAACs requires that ionization potential of the 
guest atom is high. This can be explained by the fact that lower IP results in more pronounced 
delocalization of the s valence electrons of the guest atom and partial charge transfer to the 
surrounding host atoms. The charge transfer favors larger number of neighbors due to increased 
Madelung potential, and therefore destabilizes surface position of the guest atom.  

 
We calculate SEH using SISSO models for SE and BEH [see equation (3) in the Methods 

section]. Therefore, SGD for SEH is performed using primary features appearing in the descriptors of 
both SE and BEH. The top found subgroup contains features related to binding of H to the host and 
guest metal atoms, e.g. (EB* < -5.75 eV) AND (EH* ≤ -2.10 eV) AND (EH ≥ -2.88 eV) AND 
(IP* ≤ 7.94 eV) AND (IP > 8.52 eV) AND (R ≥ 1.29 Å). However, the distribution of SE for this 
subgroup is very similar to the distribution of SEH, which means that the stability of guest atoms at 
the surface is weakly affected by H adsorption when the surface guest atoms are already very stable. 
The important effect of H adsorption is revealed when we find subgroups minimizing directly SEH – 
SE (in this case only primary features that appear in the SISSO descriptor of BEH are considered for 
SGD analysis). The top subgroup we found contains 72 samples (1.4% of the whole population) and 
is described by several degenerate selectors, in particular (-2.35 eV ≤ EH* ≤ -2.32 eV) AND 
(EC* > -2.73 eV) AND (EC < -5.98 eV) AND (H ≥ -5.12 eV). This is a very interesting and 
intuitive result. Distributions of SEH and SE for this subgroup are shown in Figure S11. The SE for 
all materials in the subgroup is above 0 eV. However, SEH is much closer to 0 eV, and is below 0 eV 
for a significant number of materials in this subgroup. The conditions on the cohesive energy of 
guest and host metals (very stable bulk guest metal and less stable bulk host metal) are reversed with 
respect to SE, i.e., adsorption of hydrogen affects strongly the systems where guest atom is unstable 
at the surface. This increases the reactivity of the guest atom towards an H atom. The condition (EH*  
≥ -2.35 eV) selects materials for which interaction of H with a host atom is not too strong, so that H 
can bond with the guest atom and stabilize it at the surface.  The condition (EH* ≤ -2.32 eV) 
makes the subgroup narrower, which further decreases median difference SEH – SE but has no 
additional physical meaning. The condition (H ≥ -5.12 eV) has a minor effect on the subgroup. 

 
One of the top selectors (among several describing very similar data subsets) for minimizing ∆ +  (calculated at T = 300 K) is: (-2.85 eV ≤ DC ≤ 1.95 eV) AND (DT* ≤ -0.17 eV). 

The corresponding subgroup contains 1974 samples (38% of the whole population), and the 
distribution of Eb within the subgroup is shown in Figure S10. The selector implies that systems 
providing low barrier for H2 dissociation and at the same time balanced binding of H atoms to the 
surface are characterized by (i) d-band center of the bulk guest metal around the Fermi level and (ii) 
d-band center of the host surface top layer below the Fermi level. This can be understood as follows. 



Condition (i) implies that there is a significant d-electron density that can be donated to the adsorbed 
H2 molecule, facilitating its dissociation. A very similar (apart from slightly different numerical 
values) condition appears in the selector for the best subgroup for Eb target property alone [(-2.05 eV 
≤ DC ≤ 1.46 eV) AND (EC* ≥ -6.33 eV)]. Condition (ii) implies that the surface d-band center 
is more than half filled, which provides additional electrons for transferring to the H2 molecule, but 
without excessive binding, to minimize |∆ | in accordance with Sabatier principle. Indeed, several 
subgroups of strongly bound H atoms (minimizing BEH) are described by selectors including 
condition DT* > -0.17, which is exactly opposite to condition (ii). Analysis of BEH and |∆ | also 
shows that the strong and intermediate binding of H atoms to the surface is fully controlled by the 
features of host material.  

 
We note that SGD is capable of finding several alternative subgroups, corresponding to different 

mechanisms of actuating interesting changes in target properties. These subgroups have a lower 
quality according to the chosen quality function, but they still contain useful information about a 
particular mechanism. In fact, they can be rigorously defined as top subgroups under additional 
constraint of zero overlap (in terms of data points) with previously found top subgroups. Analysis of 
such subgroups can be a subject of future work. We also note that quality function used in SGD is a 
parameter and can affect the found subgroups. It should be chosen based on the physical context of 
the problem. Exploring the role of different factors in the quality function and taking into account 
proposition degeneracy (no or minor effect of different conditions in the selectors due to correlation 
between the features) allows us to develop an understanding that may not be possible without the 
SGD analysis.” 
 
4) Page 7: It seems the authors identify Tc alloys as promising SAACs. It’s worth noting that there 
may be other health/safety considerations when using Tc in catalytic applications due to the fact that 
all Tc isotopes are radioactive? 
 
Response: We agree with the referee that health/safety considerations are very important for 
catalytic applications. This point is now duly mentioned on page 11 of the revised manuscript. 
 
Changes made: 
We have changed the sentence “Considering stability, activity, and abundance, two discovered best 
candidates Mn/Ag(111) and Pt/Zn(0001) are highlighted in Figure 4” to “Considering stability, 
activity, abundance, and health/safety, two discovered best candidates Mn/Ag(111) and Pt/Zn(0001) 
are highlighted in Figure 4” on page 11 of the revised manuscript. 
 
5) Page 8: I believe that the manuscript would benefit from an expanded discussion of Figure 3 that 
explains the general trends that emerge from the high-throughput screening results (e.g., in general, 
what types of guest atoms yield SAACs with low hydrogen dissociation barriers? What guest/host 
combinations lead to small segregation energies and why in terms of atomic radii size or other 
features?) 
 
Response: We thank the referee for these suggestions. In the revised manuscript, we apply the 
subgroup discovery (SGD) approach to evaluate relative role of different features in actuating 



desirable changes in target properties and to facilitate physical understanding of the actuating 
mechanisms. Please referee to comment 3) for detailed discussion. 
 
6) Minor Comments Main Text 
• Figure 1: If you change solid red circles to be different symbols for hollow bridge, bridge, top that 
would be more information-rich and potentially informative (just a suggestion). 
• Table S1 caption. “the surface-based primary features were calculated using the slab unit cell 
consisting of one atom per atomic layer.” Should be “The”. 
• Page 6: The text indicates that the primary features DC, DC*, DT, DT*, DS, and DS* appear in 
every dimension of the descriptors for hydrogen binding energy and dissociation barrier. However, 
based on Table 1, it is unclear what the DT and DS primary features are as opposed to the DT* and 
DS* primary features. From reading the SI, it seems * denotes host metal from guest atom feature. I 
think this * notation can be clarified in Table 1. 
• Page 9: “Higher stability and efficiency than the reported ones, making them perfectly optimized 
for practical applications.” Perfectly optimized seems to be a strong choice of words here. Perhaps 
remove the word “perfectly”. 
Minor Comments on Supporting Information 
• Page 1: “Spin-polarization effects are tested for and included where appropriate.” Is it noted 
somewhere for which spin polarization effects are included? This is a vague statement and could 
perhaps be made more explicit 
• Figure S1 caption. “bcc(110) e,” should be bcc(110) (e) 
• Table S3: “Binding energy of host metal dimers”, So this is a dimer energy for A(g) + A(g) -> 
A2(g)? Could perhaps be clarified. 
• Font size for the captions in Figures S3-S5 are smaller than the other Figure S captions (i.e., font 
size 10 vs. 12). 
• Table S5: “Number of system with the predicted and calculated segregation energy meet the same 
condition of SE < kTln(10) (Nmeet)…” Perhaps it should read as “Number of systems with the 
predicted and calculated segregation energies that meet the same condition…” 
 
Response: We thank the referee for pointing these issues/errors. We have modified all these 
issues/errors accordingly in the revised manuscript and supporting information. 
 
Reviewer 2: The manuscript presents machine learning models of single atom catalysts and 
screening procedure for design of hydrogenation catalysts based on this new type of alloys emerged 
in recent years. The features designed are easily available properties that are tabulated including 
electronic structure, bulk properties, etc. The target properties include the binding energy, activation 
barrier and the segregation. Those properties are crucial for screening high performance 
hydrogenation catalysts. While the work is thoroughly done in those aspects, this does not reach the 
standard of Nat Comm. 
 
Response: We thank the referee for the critical comments. In the revised manuscript we have applied 
the subgroup discovery (SGD) approach to evaluate relative role of different features in actuating 
desirable changes in target properties and to facilitate physical understanding of the actuating 
mechanisms. The combined SISSO and SGD data analytic approaches are novel which provide us 



not only predictive models but also new understanding. This allows us to go beyond the 
well-established d-band center theory, scaling relationships, and the Brønsted-Evans-Polanyi 
relationship. 
 
1) The novelty of the approach is lacking. Compressed sensing is used recently in M. Andersen, S. V. 
Levchenko, M. Scheffler, K. Reuter, Beyond Scaling Relations for the Description of Catalytic 
Materials. ACS Catal. 9, 2752–2759 (2019).  
 
Response: We would like to emphasize the advancement and novelty of our work as follows: 

(i) The aim of our work is to predict potential SAACs for hydrogenation reactions, which are 
not only active but also stable and thus suitable for several practical applications. It is 
noteworthy that SAACs has attracted significant research interests lately due to their 
immense potential in cost-effective large-scale industrial usages. Thus, while the 
methodological workhorse of this study, i.e., SISSO with DFT inputs, has already been 
discussed before, the knowledge and understanding presented here are novel and suitable 
for Nat. Comm..  

(ii) An important difference of our work from previous similar efforts [Nature Catalysis 1, 
531-539 (2018); ACS Catalysis 9, 2752-2759 (2019)] is that we have used only features that 
are very easy to evaluate. This makes high-throughput screening of a huge number of 
SAAC systems practically accessible, and we have exploited this in our study. Using our 
models, we have identified more than two hundred new SAACs with quantitative hierarchy 
for experimental validation, and have highlighted two new SAACs (Mn/Ag(111) and 
Pt/Zn(0001)) as particularly promising candidates. Moreover, in the updated manuscript we 
have also developed a novel strategy of analyzing complex models obtained by symbolic 
regression, based on the data-mining approach subgroup discovery (SGD). 

(iii) Besides the thermodynamic properties (i.e., binding energy, adsorption energy, and 
adsorption free energy) used in previous work [Nature Catalysis 1, 339-348 (2018); Nature 
Catalysis 1, 696-703 (2018); Nature 581, 178-183 (2020)] to describe the performance of 
catalysts, we have also included the kinetic property (energy barrier) and a stability 
indicator. As a result, our models both explain well the experimental results and enable 
design of high-performance catalysts with not only higher activity and but also stability.  
 

2) While the SISSO with cross validation is reasonably accurate for training a small dataset, its 
generalization to new systems is still the biggest problems for all current learning framework. Active 
learning approach was used to tackle this problem (K. Tran, Z. W. Ulissi, Active learning across 
intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nature 
Catalysis. 1, 696–703 (2018).), while a large amount of calculations are required. The current study 
used only ~300 datapoints for training and extend the model to ~5000 space without validation of 
model prediction. 
 
Response: Indeed, the referee is correct that active learning can ensure reliability of the model. 
However, combination of SISSO with active learning is a non-trivial task, because typical SISSO 
model construction is computationally expensive. To address referee’s concern, we analyze in more 
detail the cross-validation results, in particular the stability of descriptor selection during the 



cross-validation. In addition, we validate our predictions by performing DFT calculations for some 
of the identified high-performance SAACs, including all the experimentally studied systems and our 
suggested top two best systems. We would also like to mention that the number of data 
points/systems in our training set is almost three times larger than that in the study of 
oxide-supported single-atom catalyst systems studied by Nolan and co-workers using the 
compressed-sensing LASSO approach [Nature Catalysis. 1, 531–539 (2018)].  
 
Changes made: 
We have added the sentence “For the optimal dimensionality, the same set of primary features are 
selected is found during CV10 in 9, 8, and 8 cases for the SISSO models of BEH, Eb, and SE, 
respectively” on page 6 of the revised manuscript. 
 
3) The criteria for screening catalysts used in this study is arbitrary. Without detailed kinetics, the 
approach can only provide a rough screening of candidate materials. 
 
Response: We agree with the referee that detailed kinetics would improve reliability of the 
predictions. However, this is currently not feasible. Nevertheless, we do include a kinetic property 
(dissociation barrier), while previously only thermodynamic properties (binding energy, adsorption 
energy, adsorption free energy) were considered [Nature Catalysis 1, 339-348 (2018); Nature 
Catalysis 1, 696-703 (2018); Nature 581, 178-183 (2020)]. Thus, our study is the first to include a 
kinetic property in data-driven catalyst design. Alternatively, one can validate results of the 
predictions against experimental measurements. Our model consistently predicts high efficiency of 
the experimentally studied Pd/Cu, Pt/Cu, Pd/Ag, Pt/Au, Pd/Au, Pt/Ni, Au/Ru, and Ni/Zn SAACs (the 
first metal is the dispersed component), which further confirms its validity. 
 
4) For segregation, a recent study by Grabow et al. (K. K. Rao, Q. K. Do, K. Pham, D. Maiti, L. C. 
Grabow, and Extendable Machine Learning Model for the Stability of Single Atom Alloys. Top. 
Catal. (2020), doi:10.1007/s11244-020-01267-2.). Even the *H binds weakly on the metals, its effect 
on the segregation is not considered in any of those studies. 
 
Response: Actually, adsorption energies of H on metal surfaces are not small for some systems. For 
example, at room temperature and partial pressure of H2 = 1 atm, free energy of adsorption for the 
experimentally established Pt/Ag(111) system is -0.23 eV and the H adatom induced segregation 
energy change is as high as 0.49 eV.  
 
Changes made: 
The following was added to the main text: 
“We note that a machine-learning study of stability of single-atom metal alloys has been recently 
reported [Topics in Catalysis (2020) 63:728–741]. However, our analysis takes into account effects 
of adsorbates on the segregation energy, which has not been done previously.” 
 
5) The most fundamental problem of this study and the approach in general is their lacking of 
understanding the uniqueness of single atom alloys. Although the SISSO method comes up formula 
in reduced feature space, the physics is missing. The message to the community by the study is rather 



incremental while does not provide a way forward to tackle all those issues. 
 
Response: We are grateful to referee for this comment, as it shows that important implications of our 
study were unclear. Our results show that it is exactly the uniqueness of SAACs that requires 
advanced data analysis techniques to predict their properties. As we demonstrate, the 
easy-to-understand correlations that work well for simple metal surfaces are not applicable to 
SAACs. We use a methodology (compressed sensing) that not only provides a model based on easily 
accessible features, but also identifies the level of complexity of the problem in terms of those 
features.  
Nevertheless, we admit that additional data analysis that identifies common features of good SAACs 
would be useful. Therefore, we applied the subgroup discovery (SGD) approach to evaluate relative 
role of different features in actuating desirable changes in target properties and to facilitate physical 
understanding of the actuating mechanisms. 
 
Changes made: 
We have added the following paragraphs on page 10 and 11 of the revised manuscript. 
“Although the SISSO models are analytic formulas, the corresponding descriptors are complex, 
reflecting the complexity of the relationship between the primary features and the target properties. 
While potentially interpretable, the models do not provide a straightforward way of evaluating 
relative role of different features in actuating desirable changes in target properties. To facilitate 
physical understanding of the actuating mechanisms, we apply the subgroup discovery (SGD) 
approach.55-60 SGD finds local patterns in data that maximize a quality function. The patterns are 
described as an intersection (a selector) of simple inequalities involving provided features, e.g., 
(feature1<a1) AND (feature2>a2) AND... . The quality function is typically chosen such that it is 
maximized by subgroups balancing the number of data points in the subgroup, deviation of the 
median of the target property for the subgroup from the median for the whole data set, and the width 
of the target property distribution within the subgroup.60”  

“Here, we apply SGD in a novel context, namely as an analysis tool for symbolic regression 
models, including SISSO. The primary features that enter the complex SISSO descriptors of a given 
target property are used as features for SGD (see Table 2). The data set includes all 5200 materials 
and surfaces used in the high-throughput screening. The target properties are calculated using the 
obtained SISSO models. Five target properties are considered: ∆ + , SE, SEH, Eb, |∆ |, and 
BEH. Since we are interested mainly in catalysts that are active at normal conditions, ∆  is 
calculated at T = 300 K. Our goal is to find selectors that minimize these properties within the 
subgroup. Such selectors describe actuating mechanisms for minimization of a given target property. 
For SE, the following best selector is found: (EC* ≤ -3.85 eV) AND (-3.36 eV < EC ≤ -0.01 eV) 
AND (IP ≥ 7.45 eV). The corresponding subgroup contains 738 samples (14% of the whole 
population), and the distribution of SE within the subgroup is shown in Figure S10. Qualitatively, the 
first two conditions imply that the cohesive energy of the host material is larger in absolute value 
than the cohesive energy of the guest material. Physically this means that bonding between host 
atoms is preferred over bonding between guest atoms and therefore over intermediate host-guest 
binding. This leads to the tendency of maximizing number of host-host bonds by pushing guest atom 
to the surface. This stabilization mechanism has been discussed in literature,61 and here we confirm it 
by data analysis. In addition, we find that stability of SAACs requires that ionization potential of the 



guest atom is high. This can be explained by the fact that lower IP results in more pronounced 
delocalization of the s valence electrons of the guest atom and partial charge transfer to the 
surrounding host atoms. The charge transfer favors larger number of neighbors due to increased 
Madelung potential, and therefore destabilizes surface position of the guest atom.  

 
We calculate SEH using SISSO models for SE and BEH [see equation (3) in the Methods 

section]. Therefore, SGD for SEH is performed using primary features appearing in the descriptors of 
both SE and BEH. The top found subgroup contains features related to binding of H to the host and 
guest metal atoms, e.g. (EB* < -5.75 eV) AND (EH* ≤ -2.10 eV) AND (EH ≥ -2.88 eV) AND 
(IP* ≤ 7.94 eV) AND (IP > 8.52 eV) AND (R ≥ 1.29 Å). However, the distribution of SE for this 
subgroup is very similar to the distribution of SEH, which means that the stability of guest atoms at 
the surface is weakly affected by H adsorption when the surface guest atoms are already very stable. 
The important effect of H adsorption is revealed when we find subgroups minimizing directly SEH – 
SE (in this case only primary features that appear in the SISSO descriptor of BEH are considered for 
SGD analysis). The top subgroup we found contains 72 samples (1.4% of the whole population) and 
is described by several degenerate selectors, in particular (-2.35 eV ≤ EH* ≤ -2.32 eV) AND 
(EC* > -2.73 eV) AND (EC < -5.98 eV) AND (H ≥ -5.12 eV). This is a very interesting and 
intuitive result. Distributions of SEH and SE for this subgroup are shown in Figure S11. The SE for 
all materials in the subgroup is above 0 eV. However, SEH is much closer to 0 eV, and is below 0 eV 
for a significant number of materials in this subgroup. The conditions on the cohesive energy of 
guest and host metals (very stable bulk guest metal and less stable bulk host metal) are reversed with 
respect to SE, i.e., adsorption of hydrogen affects strongly the systems where guest atom is unstable 
at the surface. This increases the reactivity of the guest atom towards an H atom. The condition (EH*  
≥ -2.35 eV) selects materials for which interaction of H with a host atom is not too strong, so that H 
can bond with the guest atom and stabilize it at the surface.  The condition (EH* ≤ -2.32 eV) 
makes the subgroup narrower, which further decreases median difference SEH – SE but has no 
additional physical meaning. The condition (H ≥ -5.12 eV) has a minor effect on the subgroup. 

 
One of the top selectors (among several describing very similar data subsets) for minimizing ∆ +  (calculated at T = 300 K) is: (-2.85 eV ≤ DC ≤ 1.95 eV) AND (DT* ≤ -0.17 eV). 

The corresponding subgroup contains 1974 samples (38% of the whole population), and the 
distribution of Eb within the subgroup is shown in Figure S10. The selector implies that systems 
providing low barrier for H2 dissociation and at the same time balanced binding of H atoms to the 
surface are characterized by (i) d-band center of the bulk guest metal around the Fermi level and (ii) 
d-band center of the host surface top layer below the Fermi level. This can be understood as follows. 
Condition (i) implies that there is a significant d-electron density that can be donated to the adsorbed 
H2 molecule, facilitating its dissociation. A very similar (apart from slightly different numerical 
values) condition appears in the selector for the best subgroup for Eb target property alone [(-2.05 eV 
≤ DC ≤ 1.46 eV) AND (EC* ≥ -6.33 eV)]. Condition (ii) implies that the surface d-band center 
is more than half filled, which provides additional electrons for transferring to the H2 molecule, but 
without excessive binding, to minimize |∆ | in accordance with Sabatier principle. Indeed, several 
subgroups of strongly bound H atoms (minimizing BEH) are described by selectors including 
condition DT* > -0.17, which is exactly opposite to condition (ii). Analysis of BEH and |∆ | also 



shows that the strong and intermediate binding of H atoms to the surface is fully controlled by the 
features of host material.  

 
We note that SGD is capable of finding several alternative subgroups, corresponding to different 

mechanisms of actuating interesting changes in target properties. These subgroups have a lower 
quality according to the chosen quality function, but they still contain useful information about a 
particular mechanism. In fact, they can be rigorously defined as top subgroups under additional 
constraint of zero overlap (in terms of data points) with previously found top subgroups. Analysis of 
such subgroups can be a subject of future work. We also note that quality function used in SGD is a 
parameter and can affect the found subgroups. It should be chosen based on the physical context of 
the problem. Exploring the role of different factors in the quality function and taking into account 
proposition degeneracy (no or minor effect of different conditions in the selectors due to correlation 
between the features) allows us to develop an understanding that may not be possible without the 
SGD analysis.” 
 
Reviewer 3: The authors report the use of modern data analytics towards the reliable prediction of 
activity and stability of dilute alloy “single atom catalysts” for hydrogenation. The topic of particular 
interest as single atom catalysts have made massive strides for oxidation reactions but have had 
limited success for reductions particularly due to lack of activity and/or abysmal stability.  
 
1) The strength of the authors approach is that it addresses catalyst screening beyond the simple 
approximation BEP, d-band center etc. etc. etc. These concepts are embedded in the psyche of 
computational catalysis so deep that we forget they are simple models and, in many instances, to too 
simple for quantitative predictions-but excellent for rationalizations on small data sets.  
 
Response: We thank the reviewer for this comment. It correctly outlines the important aspect of our 
work. 
 
2) The authors show that by assembling a large number of atomic, bulk and allow descriptors (table1) 
they are able to perform a high dimensional correlation with the ab initio data to yield property 
predictions FAR more accurate than the existing simple concepts. On the one hand this is a great step 
forward for screening studies on the other hand if I have a more complex fitting function, I do expect 
a better fit. The one worry I have is this then become a brute force approach without the intellectual 
understanding that can be provided by a simple model. In this respect it might have been more 
intellectually pleasing for the authors to consider if there was a smaller subset of parameters (2-3) 
that might do a reasonable job (better than linear fits but not the full-blown set) which might hint at a 
simpler model. As is, the approach is fine I do worry about both overfitting/underfitting of data but 
do believe the authors have covered this ground adequately. 
 
Response: This is a very important comment that overlaps with similar concerns of the other 
referees. Indeed, we perform a careful cross-validation of our models and validate them on a test set 
never used for training, to ensure models’ predictive power. However, the training and test sets are 
unavoidably limited, and there is never a guarantee that we capture all important physical variations 
present in the larger data set. This makes our mind crave for additional consistency check that we 



call “physical understanding”. It justifies extrapolation of the models, possibly even to a different 
class of systems. Such extrapolation can be very useful, but also very misleading, as our study 
demonstrates. Nevertheless, we admit that additional data analysis that identifies common features of 
good SAACs would be useful. Therefore, we applied the subgroup discovery (SGD) approach to 
evaluate relative role of different features in actuating desirable changes in target properties and to 
facilitate physical understanding of the actuating mechanisms. 
 
Changes made: 
We have added the following paragraphs on page 10 and 11 of the revised manuscript. 
“Although the SISSO models are analytic formulas, the corresponding descriptors are complex, 
reflecting the complexity of the relationship between the primary features and the target properties. 
While potentially interpretable, the models do not provide a straightforward way of evaluating 
relative role of different features in actuating desirable changes in target properties. To facilitate 
physical understanding of the actuating mechanisms, we apply the subgroup discovery (SGD) 
approach.55-60 SGD finds local patterns in data that maximize a quality function. The patterns are 
described as an intersection (a selector) of simple inequalities involving provided features, e.g., 
(feature1<a1) AND (feature2>a2) AND... . The quality function is typically chosen such that it is 
maximized by subgroups balancing the number of data points in the subgroup, deviation of the 
median of the target property for the subgroup from the median for the whole data set, and the width 
of the target property distribution within the subgroup.60” 
 

“Here, we apply SGD in a novel context, namely as an analysis tool for symbolic regression 
models, including SISSO. The primary features that enter the complex SISSO descriptors of a given 
target property are used as features for SGD (see Table 2). The data set includes all 5200 materials 
and surfaces used in the high-throughput screening. The target properties are calculated using the 
obtained SISSO models. Five target properties are considered: ∆ + , SE, SEH, Eb, |∆ |, and 
BEH. Since we are interested mainly in catalysts that are active at normal conditions, ∆  is 
calculated at T = 300 K. Our goal is to find selectors that minimize these properties within the 
subgroup. Such selectors describe actuating mechanisms for minimization of a given target property. 
For SE, the following best selector is found: (EC* ≤ -3.85 eV) AND (-3.36 eV < EC ≤ -0.01 eV) 
AND (IP ≥ 7.45 eV). The corresponding subgroup contains 738 samples (14% of the whole 
population), and the distribution of SE within the subgroup is shown in Figure S10. Qualitatively, the 
first two conditions imply that the cohesive energy of the host material is larger in absolute value 
than the cohesive energy of the guest material. Physically this means that bonding between host 
atoms is preferred over bonding between guest atoms and therefore over intermediate host-guest 
binding. This leads to the tendency of maximizing number of host-host bonds by pushing guest atom 
to the surface. This stabilization mechanism has been discussed in literature,61 and here we confirm it 
by data analysis. In addition, we find that stability of SAACs requires that ionization potential of the 
guest atom is high. This can be explained by the fact that lower IP results in more pronounced 
delocalization of the s valence electrons of the guest atom and partial charge transfer to the 
surrounding host atoms. The charge transfer favors larger number of neighbors due to increased 
Madelung potential, and therefore destabilizes surface position of the guest atom.  

 
We calculate SEH using SISSO models for SE and BEH [see equation (3) in the Methods 



section]. Therefore, SGD for SEH is performed using primary features appearing in the descriptors of 
both SE and BEH. The top found subgroup contains features related to binding of H to the host and 
guest metal atoms, e.g. (EB* < -5.75 eV) AND (EH* ≤ -2.10 eV) AND (EH ≥ -2.88 eV) AND 
(IP* ≤ 7.94 eV) AND (IP > 8.52 eV) AND (R ≥ 1.29 Å). However, the distribution of SE for this 
subgroup is very similar to the distribution of SEH, which means that the stability of guest atoms at 
the surface is weakly affected by H adsorption when the surface guest atoms are already very stable. 
The important effect of H adsorption is revealed when we find subgroups minimizing directly SEH – 
SE (in this case only primary features that appear in the SISSO descriptor of BEH are considered for 
SGD analysis). The top subgroup we found contains 72 samples (1.4% of the whole population) and 
is described by several degenerate selectors, in particular (-2.35 eV ≤ EH* ≤ -2.32 eV) AND 
(EC* > -2.73 eV) AND (EC < -5.98 eV) AND (H ≥ -5.12 eV). This is a very interesting and 
intuitive result. Distributions of SEH and SE for this subgroup are shown in Figure S11. The SE for 
all materials in the subgroup is above 0 eV. However, SEH is much closer to 0 eV, and is below 0 eV 
for a significant number of materials in this subgroup. The conditions on the cohesive energy of 
guest and host metals (very stable bulk guest metal and less stable bulk host metal) are reversed with 
respect to SE, i.e., adsorption of hydrogen affects strongly the systems where guest atom is unstable 
at the surface. This increases the reactivity of the guest atom towards an H atom. The condition (EH*  
≥ -2.35 eV) selects materials for which interaction of H with a host atom is not too strong, so that H 
can bond with the guest atom and stabilize it at the surface.  The condition (EH* ≤ -2.32 eV) 
makes the subgroup narrower, which further decreases median difference SEH – SE but has no 
additional physical meaning. The condition (H ≥ -5.12 eV) has a minor effect on the subgroup. 

 
One of the top selectors (among several describing very similar data subsets) for minimizing ∆ +  (calculated at T = 300 K) is: (-2.85 eV ≤ DC ≤ 1.95 eV) AND (DT* ≤ -0.17 eV). 

The corresponding subgroup contains 1974 samples (38% of the whole population), and the 
distribution of Eb within the subgroup is shown in Figure S10. The selector implies that systems 
providing low barrier for H2 dissociation and at the same time balanced binding of H atoms to the 
surface are characterized by (i) d-band center of the bulk guest metal around the Fermi level and (ii) 
d-band center of the host surface top layer below the Fermi level. This can be understood as follows. 
Condition (i) implies that there is a significant d-electron density that can be donated to the adsorbed 
H2 molecule, facilitating its dissociation. A very similar (apart from slightly different numerical 
values) condition appears in the selector for the best subgroup for Eb target property alone [(-2.05 eV 
≤ DC ≤ 1.46 eV) AND (EC* ≥ -6.33 eV)]. Condition (ii) implies that the surface d-band center 
is more than half filled, which provides additional electrons for transferring to the H2 molecule, but 
without excessive binding, to minimize |∆ | in accordance with Sabatier principle. Indeed, several 
subgroups of strongly bound H atoms (minimizing BEH) are described by selectors including 
condition DT* > -0.17, which is exactly opposite to condition (ii). Analysis of BEH and |∆ | also 
shows that the strong and intermediate binding of H atoms to the surface is fully controlled by the 
features of host material.  

 
We note that SGD is capable of finding several alternative subgroups, corresponding to different 

mechanisms of actuating interesting changes in target properties. These subgroups have a lower 
quality according to the chosen quality function, but they still contain useful information about a 



particular mechanism. In fact, they can be rigorously defined as top subgroups under additional 
constraint of zero overlap (in terms of data points) with previously found top subgroups. Analysis of 
such subgroups can be a subject of future work. We also note that quality function used in SGD is a 
parameter and can affect the found subgroups. It should be chosen based on the physical context of 
the problem. Exploring the role of different factors in the quality function and taking into account 
proposition degeneracy (no or minor effect of different conditions in the selectors due to correlation 
between the features) allows us to develop an understanding that may not be possible without the 
SGD analysis.” 
 
3) Finally, then the result of this study is that using their model they can rapidly predict the results of 
DFT calculations and use that data to make predictions about activity and stability based on simple 
energetic parameters such as presented in Figure 4. In my opinion this is the most important plot in 
the whole paper and the authors did not really deal with its ramifications very well. The wisdom in 
single atom catalysts (particularly for hydrogenation) is that the more active the species the less 
stable if will be-hence the scarcity of single atoms (dilute alloys) that are reported. If the authors are 
correct there is a large abundance of materials far in the lower right-hand corner (active and stable) 
that should break this trend whereas those that do exist are mostly in the upper right-hand corner 
(active but less stable). This is the most significant discovery/prediction in the paper as far as I am 
concerned, and the authors barely comment on it. Sadly, a follow-on experimental study making 
targets and validating the prediction would be a breakthrough and this is also not done. 
 
Response: There seems to be a misunderstanding regarding Fig. 4. The most active and stable 
materials are in the lower LEFT-hand corner. Just as the referee points out, this corner is scarcely 
populated compared to the whole area covered by all calculated materials. However, this does not 
mean there are no materials that can be better than the experimentally tested ones. To clarify this 
aspect, we have now added a discussion to the main text and new Figure S9 in the revised supporting 
information, which is reproduced as Figure R1 below. 
 



 
Figure R1. Stability vs. activity map for flat SAACs surfaces at T=298 K and p=1 atm. The SE on 
y-axis represents stability and activity parameter ∆ +  is shown on x-axis.   
 
Changes made: 
1) We have added the sentences: 

 “As expected, stability and activity are inversely related, which can be seen from the negative 
slope of the general trend in Figure 8 (showing selected materials) and Figure S9 (showing all 
explored materials), as well as a cut-off in population of the lower left-hand corner of these plots. 
Nevertheless, there are several materials that are predicted to be better SAACs than the so-far 
reported ones.” on page 11 of the revised manuscript. 

2) We added Figure S9 in the revised supporting materials.  
 
4) Sadly, a follow-on experimental study making targets and validating the prediction would be a 
breakthrough and this is also not done. 
 
Response: This work was conceived as a theoretical one. We are happy to share methodology and 
predictions with the community as soon as possible. We very much hope that our findings will 
encourage experimental groups to validate our predictions. 



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
The authors have greatly expanded their work based on the reviewer comments. Importantly, they 
now utilize a data mining algorithm called Subgroup Discovery to analyze their SAAC dataset in 
combination with their SISSO model. This added analysis enables the authors to give much more 
satisfying and general insights regarding the stability and activity of the SAACs, which should prove 
useful for the catalysis community. Additionally, Subgroup Discovery has not been used yet in the 
catalysis/surface science fields (and SISSO algorithm has only been used once before in catalysis field 
to my knowledge), thus this work also introduces cutting-edge data science tools to the broader 
scientific community. Therefore, this paper should be of broad interest to multiple communities. I 
believe the work is suitable for publication. 
 
 
Reviewer #2 (Remarks to the Author): 
 
Authors addressed most of the comments. However, the physical insights by subgroup discovery is 
rather limited. I stick to my opinion that this work is not a significant step toward ML method itself or 
SAAC discovery. It might be appropriate to a more specialized catalysis journal. 
1. The SISSO machine learning method employed in this study is not new. With the same set of 
features, a regular neural network can be more easily trained and coupled with active learning. With 
existing alloy database published in community, a convolutional neural net can also be used since the 
local environment of single atom alloys is analogous to the traditional fcc-type alloys, e.g. A3B, in the 
first coordination shell. In term of physical interpretation, they are all black-box models. SISSO can 
give a formula instead, although its direct understanding by a catalysis expert is still not there. The 
formula can be considered as symbolic regression rather than physical models. Interpreting black-box 
models are not necessarily providing physical insights that can be translated to design. 
2. Subgroup discovery is a half-way approach to extract conditions of features optimizing a defined 
quality function. It is monte carlo based algorithm. The identified boundary values will depend on runs 
and hyperparameters. The approach has been used in materials science and catalysis. It is overstated 
in terms of novelty in the context. The rule identified by the method is convoluted rather than being 
insightful. 
3. The design space of SAAs is relatively small compared to complex alloys. The indication in abstract 
for hundreds of thousands is misleading. 
4. It says the energy BEH and the d-band center and (b) the H2 dissociation energy barrier Eb and the 
H2 dissociation reaction energy for Pt(111) based SAACs. But the (b) panel is missing. 
5. It claimed a step away from the d-band theory, BEP, and scaling relations. While machine learning 
models can be considered as a further step away from the d-band center type of theory level, it is not 
fair to say that for the original d-band theory since machine learning models are regression based 
only. It is not close to go beyond BEP and scaling relations in this work since it simply does not 
consider full reaction pathways. The claim is irrelevant. 
6. The d-band center of the bonding guest atom is obvious choice for atop adsorption, but not quite 
for hollow, bridge. The averaged d-band center of a collection of atoms in the revision is not the right 
since the coupling strength decays rapidly with distance. 
 
 
Reviewer #3 (Remarks to the Author): 
 
After carefully considering the previous reviewers’ comments and the revised manuscript I can say 
most of the technical concerns I have about this work are resolved and I may have even softened (but 
not changed) my stance about not really bringing new understanding. I still do not like these 
screening/data analytics papers for the sake of data analytics but in this case the decision point for me 
is that the authors predict many new catalysts so, in principle, the way to test and validate this model 
is on the table. 
 
IF the authors are right then this is a breakthrough, if they are wrong … I think this may well be worth 
publishing in Nature Comm and I look forward to seeing this work validated (or not). 
The text does require significant proof reading and improving on the English, particularly the new 
parts and should be proof read careful before it is published. 



Reviewer 1: 
The authors have greatly expanded their work based on the reviewer comments. Importantly, they 
now utilize a data mining algorithm called Subgroup Discovery to analyze their SAAC dataset in 
combination with their SISSO model. This added analysis enables the authors to give much more 
satisfying and general insights regarding the stability and activity of the SAACs, which should prove 
useful for the catalysis community. Additionally, Subgroup Discovery has not been used yet in the 
catalysis/surface science fields (and SISSO algorithm has only been used once before in catalysis 
field to my knowledge), thus this work also introduces cutting-edge data science tools to the broader 
scientific community. Therefore, this paper should be of broad interest to multiple communities. I 
believe the work is suitable for publication. 
 
Reply: We thank the reviewer for the positive assessment of our work, and most of all for the 
reviewer’s critical comments that helped us to improve our manuscript. 
 
 
Reviewer 2: 
 
Authors addressed most of the comments. However, the physical insights by subgroup discovery is 
rather limited. I stick to my opinion that this work is not a significant step toward ML method itself 
or SAAC discovery. It might be appropriate to a more specialized catalysis journal. 
 
Reply: We thank the reviewer for sharing his/her opinion, and address the reviewer’s concerns below. 
 
1. The SISSO machine learning method employed in this study is not new. With the same set of 
features, a regular neural network can be more easily trained and coupled with active learning. With 
existing alloy database published in community, a convolutional neural net can also be used since the 
local environment of single atom alloys is analogous to the traditional fcc-type alloys, e.g. A3B, in 
the first coordination shell.  
In term of physical interpretation, they are all black-box models. SISSO can give a formula instead, 
although its direct understanding by a catalysis expert is still not there. The formula can be 
considered as symbolic regression rather than physical models. Interpreting black-box models are not 
necessarily providing physical insights that can be translated to design. 
 
Reply: Whether it would be easier to train a convolutional neural network coupled with active 
learning remains to be seen, in particular if one takes into account typically much larger number of 
training data needed for a reliable NN model. Also, it remains to be seen whether the list of primary 
features plus the existing data on fcc-type alloys are sufficient for a better prediction model. These 
questions are an interesting topic for future work, as there is no evidence in the literature regarding 
these issues. However, they are beyond the scope of this work. Compressed-sensing based descriptor 
identification is not a new idea in general, but it is much newer than NN, and we are aware of only 
one published application of SISSO in catalysis (with a contribution by one of the authors), which 
however did not include a high-throughput study. Using SISSO to specifically predict properties of 
SAACs is in fact a new idea. As the referee points out, SISSO provides analytic formulas as models. 
While it is indeed sometimes not easy to interpret these models, in our manuscript we developed a 



novel approach that allows us to move forward also in this direction. We were inspired by comments 
of this and the other referees to do this. Our approach allows us to extract physical understanding 
based on thorough data analysis rather than intuition based on a limited set of data. We believe this is 
an important step that is of general interest to the community, in addition to our actual 
high-throughput predictions.  
 
2. Subgroup discovery is a half-way approach to extract conditions of features optimizing a defined 
quality function. It is monte carlo based algorithm. The identified boundary values will depend on 
runs and hyperparameters. The approach has been used in materials science and catalysis. It is 
overstated in terms of novelty in the context. The rule identified by the method is convoluted rather 
than being insightful. 
 
Reply: We are not sure what referee means by “half-way approach”. We have not seen such a 
characteristics in existing literature. It is for sure a novel approach in catalysis. Although there is a 
publication that employed SGD in the context of catalysis, there are no examples of using SGD for 
catalyst design. However, we do not even claim novelty of SGD, we claim novelty of how we use it: 
to interpret complex symbolic regression models. 
Yes, SGD results depend on the run if the Monte Carlo approach is used (as in our case). However, 
this dependence comes mainly from feature correlations, provided an extensive sampling was 
performed. The realkd implementation takes special care in distributing sampling points optimally to 
improve sampling efficiency, and we performed an extensive sampling. In fact, we always see 
consistency among several top subgroups. The problem is not the convolution but the idea that one 
can always just take an arbitrary set of features, look at the top subgroup for a given property and 
hope to get an insight just looking at it. As we describe in the text, the insight should come from 
understanding the physics behind the primary features and analysis of several top selectors and a 
joint analysis of subgroups for different target properties. To emphasize this, we have updated the 
following paragraph: 
 
“Exploring the role of different factors in the quality function and taking into account proposition 
degeneracy (no or minor effect of different conditions in the selectors due to correlation between the 
features) can significantly improve interpretability of the selectors. The interpretability also depends 
crucially on our physical understanding of the features and relations between them. Nevertheless, in 
combination with human knowledge SGD analysis allows for development of understanding that 
would not be possible without the help of artificial intelligence.” 
 
3. The design space of SAAs is relatively small compared to complex alloys. The indication in 
abstract for hundreds of thousands is misleading. 
 
Reply: For binary alloys we agree with the referee, but if we consider multi-component alloys there 
are easily hundreds of thousands. However, since we consider only binary SAACs, we follow 
referee’s suggestion and remove that statement.  
 
4. It says the energy BEH and the d-band center and (b) the H2 dissociation energy barrier Eb and 
the H2 dissociation reaction energy for Pt(111) based SAACs. But the (b) panel is missing. 



 
Reply: Thank you for noticing this. Perhaps something went wrong with formatting. We have 
checked to make the changes correspondingly. 
 
5. It claimed a step away from the d-band theory, BEP, and scaling relations. While machine learning 
models can be considered as a further step away from the d-band center type of theory level, it is not 
fair to say that for the original d-band theory since machine learning models are regression based 
only. It is not close to go beyond BEP and scaling relations in this work since it simply does not 
consider full reaction pathways. The claim is irrelevant. 
 
Reply: Indeed, for a neural network model based on hand-picked descriptors this would be a fair 
criticism. But we use SISSO to IDENTIFY descriptors, and we can directly compare their 
performance with the d-band center descriptor. Whether we can provide a physical interpretation of 
the identified descriptor is a different matter, and we show how to do it with SGD. 
 
6. The d-band center of the bonding guest atom is obvious choice for atop adsorption, but not quite 
for hollow, bridge. The averaged d-band center of a collection of atoms in the revision is not the right 
since the coupling strength decays rapidly with distance. 
 
Reply: For all Ag(110) and Pt(111) based SAACs the most stable adsorption sites are hollow sites. 
We found the correlation between BEH and the d-band center of the d orbitals that are projected to 
the single guest atom for the alloyed systems provides better correlation with other properties than 
d-band centers for the d orbitals projected on (i) the single guest atom plus it’s 1st nearest neighbor 
shell or (ii) the whole slab. This is consistent with a previous study [Topics in Catalysis 61, 462-474 
(2018)]. 
 
 
Reviewer 3: 
After carefully considering the previous reviewers’ comments and the revised manuscript I can say 
most of the technical concerns I have about this work are resolved and I may have even softened (but 
not changed) my stance about not really bringing new understanding. I still do not like these 
screening/data analytics papers for the sake of data analytics but in this case the decision point for 
me is that the authors predict many new catalysts so, in principle, the way to test and validate this 
model is on the table. 
IF the authors are right then this is a breakthrough, if they are wrong … I think this may well be 
worth publishing in Nature Comm and I look forward to seeing this work validated (or not). 
The text does require significant proof reading and improving on the English, particularly the new 
parts and should be proof read careful before it is published. 
 
Reply: We thank the referee for the clear opinion and critical comments that helped to significantly 
improve our manuscript. Indeed, to the best of our knowledge this work is the first one that uses 
SISSO for high-throughput PREDICTIONS of catalytic properties rather than just data analysis. 
From this point of view, our work is both a guide for a rational design of SAACs and an important 
step towards testing and further development of data-analytics methodology for catalysis. 



Following the advice by the referee, we have carefully proofread the text. 
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