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Method Explicit e-correlations Wave-function Cost (PC)
Ab initio
(MP2, CI, CAS-CI, CC-EOM)

All
(depends on level of theory)

Exact
(for given basis set)

Large
(≥10 electrons)

Density Functional
(DFT, TDDFT)

Dynamic only Kohn-Sham
(a single-det. “fit” to e-density)

Significant
(≤1000 atoms)

Semiempirical
(AM1, PM7, ZINDO)

Coulomb, exchange, static Hartree-Fock
(variationally optim. single-det.)

Low
(≤10 000 atoms)

Tight-binding
(Huckel, Frenkel, DFTB)

No One-electron
(total e-energy is inaccurate)

Approach MM
(>10 000 atoms)

The electronic structure problem: overview
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●A system of fermions interacting via Coulomb potential in electrostatic field of  
nuclei

●Problem 1 – one-electron problem: use finite basis set (atomic-like orbitals  
STO/GTO or plane waves)

●Problem 2 – many-body problem: use mean field (HF, DFT, TDDFT) and  
perturbation theories (MP2, CI, CC) in Fock space (basis of Slater 
determinants)
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What is our basis set? Atomic orbitals and the LCAO approach

Figure 4.1 (from Cramer) Two different  
basis sets for representing a C–H σ  
bonding orbital with the size of the basis  
functions roughly illustrating their  
weight in the hybrid MO. Distinguishes 
where an orbital is centered.

Basis set = the ‘room’ for electrons to occupy!

This is a fundamental approximation in ALL  
electronic structure calculations!

The foundation of every electronic structure code
= only one ‘type’ of the basis set is used in the
program

The LCAO concept: construct a guess wave  
function Φ as a linear combination of  known 
atomic wave functions φi

The choice of the basis set type is just a  
balance between numerical efficiency 
and  physical nature of the electronic  
wavefunctions to be described!
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Common examples: Slater (exponential),  
Gaussian, polynomial, plane waves,  
wavelets, cube functions, …
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Variational principle leads
to a secular equation

For a minimum i.e.,

N roots: eigenvalues (E) and eigenvectors (a
i
) defining molecular orbitals (MO)

Solving one-electron problem:  
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Resonant  and 
overlap  
integrals:

For one electron system the lowest energy molecular 
orbital is the ground state and the higher are excited states



Atomic vs molecular orbitals, spin orbital

Atomic orbital (φ) - is a wave function for a single electron in 
atom. 
Molecular orbital (ψ) - in molecule, can be represented as a 
combination of atomic orbitals
ψ

i
(r) is spatial orbital 

Orthonormal basis set 

χ is the wave function describing both 
spatial distribution and spin orbitals α 
(spin up) and β (spin down)
ω is unspecified spin variable



Example 1: Slater-type orbitals (STO)

Atom-centered polar coordinates: ζ is a  
Slater exponent (Slater rules, 1930) that  
depend on the atomic number, n is the  
principal quantum number for the valence  
orbital, and the spherical harmonic 
functions Y

m
 l (θ, φ), depending on the  

angular momentum quantum numbers l
and m, (from solution of the Schrödinger  
equation for the hydrogen atom)

Advantages: chemically intuitive, physically  
transparent, ‘tails’ of the wavefunctions are  
important
Disadvantages: numerically difficult (2e 
integrals  need to be evaluated numerically)
Where used: small molecules semiempirical  
approaches (few 2e integrals), density functional  
theory (kernels without exact exchange)  
Package: ADF (Amsterdam Density Functional)

Example: H
2 

molecule (from Szabo)

(1s orbital for H)  

(overlap)

(bonding and antibonding  
MOs, the HF solutions for H

2
)
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Example 2: Gaussian-type orbitals (GTO)
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Idea: Fit Slater-type atomic orbitals with a  
superposition of Gaussian orbitals

Advantages: chemically intuitive, physically  
transparent for finite size molecules, numerically  
easy (2e integrals are evaluated analytically)
Disadvantages: ‘tails’ of the wavefunctions are  
‘too short’, no ‘cusp’ of the wavefunction near  
nuclei, issues with over-completeness and  
orthogonalization in extended sets
Where used: majority of electronic structure  
modeling (both wavefunction and DFT methods)  
in the finite size molecules
Package: Gaussian, Turbomole, Q-Chem,  
GAMESS, Firefly, etc.

Generally 3 GTO fit well 1 STO:

Evaluation of integrals is analytic:
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GTO extravaganza
-Contracted basis set: GTO basis function is a FIXED superposition of primitive GFs
-Minimum basis set: the smallest BS able only to host electrons on an atom
-Double zeta (DZ) basis set: doubling of all basis functions (tighter and diffuse exp)
-Split valence basis set: doubling of all basis functions only on valence orbitals
-Triple Zeta (TZ), triple split valence, Quadruple Zeta (QZ), Pentuple Zeta (PZ)….
-Adding polarization (e.g. TZP) and diffuse functions

Table 5.1 (from Jensen): The Pople-style basis sets

Table 5.2 (from Jensen): The Ahlrichs type basis sets
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Polarization and diffuse functions

Diffuse functions ( denoted by +) are  “large” s and p orbitals 
for “diffuse electrons” such as lone pairs, anions, excited states



Lets consider 6-31+G* Popple basis set for carbo
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Many-electron Wave Functions: Hartree 
product

Huckel theory example is a one-electron formalism, though the 
interaction is taken into account in some average way due to relying 
on experimental data the approach is crude.

Let’s assume that the Hamiltonian is separable Hartree product:



The Hartree Hamiltonian and 
self-consistent field (SCF) method

How to use individual orbitals in Hamiltonian before they are known?

Guess wave functions for all of the occupied 
MOs

Construct the necessary one-electron 
operators h

Solve equations and obtain wavefunctions

Scf 
converged? 

no

yes

stop



Double counting

h
i
 includes the repulsion between electron i and electron j , but so 

too does h
j
, sum all of the one-electron eigenvalues for the 

operators hi double-count the electron–electron repulsion.

To correct we should subtract double counting:

Coulomb integral, Jij



Electron spin and antisymmetry

Hartree product for a triplet state (two spins in parallel), electron 1 in 
state a and electron 2 in state b

Lets apply permutation operator P
12

:

According to Pauli principle the wave functions must change sign whenever the 
coordinates of two electrons are interchanged, but this condition is not satisfied for 
Hartree product, but it is satisfied for

Every electron appears in every spin orbital somewhere in the 
expansion. This is a manifestation of the indistinguishability of 
quantum particles

The permutation operator 
interchanges two rows, 
determinant changes  sign



Quantum mechanical exchange

Kab is exchange integral. Coulomb 
repulsion between the electron clouds 
in orbitals a and b is reduced by K

ab



One-electron Fock operator

where V
i
HF = 2J

i
 - K

i

To find MO and roots we solve secular equation, F and S are 
computed explicitly:

here Greek letters 
define basis 
functions

One electron integrals: Two electron integrals, N4 (here fi is probability density!):

P is density matrix



Flow chart of the HF SCF procedure



Semiempirical QM: Philosophy

1. Numerical approximations
HF is a challenge, the number of four index integrals is N4

Therefore the idea is to make it more tractable despite some loss in accuracy

2. Chemically virtuous approximation
HF is called ab initio or first-principles  approach, since no empirical 
information is used. However, the mean-field nature not all electron-electron 
interactions are taken into account. E

HF
 > H

exact
; E

cor
 = H

exact
 - E

HF
.

An approximation can introduce correlation improving chemical accuracy

3. Approximations have parametric form, parameters are chosen so as best 
to reproduce experiment, therefore methods are called semiempirical

4. Since large molecules are of high interest,  the semiempirical methods 
continue to develop



Extended Huckel theory

1 Slater orbitals are used to compute overlap integrals
2. Diagonal H is the same, but the non diagonal is additionally 
considered



Complete neglect of differential 
overlap (CNDO)

One STO per valence orbital

only the same basis orbitals on 
atom survive 

where A and B 
are different 
atoms



Intermediate neglect differential 
overlap 

INDO - Intermediate neglect differential overlap, relax constraints 
on 1c2e integrals, 
NDDO and MNDO - (modified) neglect of diatomic differential 
overlap,  relax constraints on 2c2e integrals, 

AM1 Austin Model 1: (Dewar 1985) 

PM3, PM7 - Parameterized Model 3, 7 (Stewart 1989), very 
similar to AM1 but the algorithm of parametrization is different



Accuracy: heat formation



Accuracy: geometry and charges

● Dewar, Jie, and Yu (1993) evaluated AM1 and PM3 for 344 bond lengths and 
146 valence angles in primarily organic molecules composed of H, C, N, O, F, 
Cl, Br, and I; the average unsigned errors were 0.027 and 0.022 A ̊ , 
respectively, for the bond lengths, and 2.3 and 2.8◦, respectively, for the 
angles.

● Stewart (1991) performed a similar analysis for a larger set of molecules, 
some of them including Al, Si, P, and S. For 460 bond lengths, the mean 
unsigned errors were 0.054, 0.050, and 0.036 A ̊ for MNDO, AM1, and PM3, 
respectively.

● For a 125-molecule test set including H, C, N, O, F, Al, Si, P, S, Cl, Br, and I 
functionality, Stewart found mean unsigned errors in dipole moments of 
0.45, 0.35, and 0.38 D, respectively, for MNDO, AM1, and PM3 (Stewart 
1989)



Individual studies:
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• Reading.
Required: Cramer (Ch. 4 and Ch. 5)
Additional: 


