USP Tutorial 4: Crystals with DFT Lab 4. VASP

The authors: Prof. Dmitry Aksyonov PhD Arseniy Burov

December, 2023

Tutorial 4 agenda

1. Prerequisites for Lab 4

a. DFT for crystals

b. Set-up your environment

2. Lab 4. VASP

- a. How to set-up your lab
- b. Units
- c. Basic commands and functions
- d. Lab tasks

Idea: In periodic system, one-electron wavefunction can be chosen to be a plane wave times the periodicity of the Bravais lattice.

Periodic function with periodicity of the crystal

$$\phi_{\mathbf{k},n}(\mathbf{r}) = u_{\mathbf{k},n}(\mathbf{r})$$

- **k** new quantum number, vector in reciprocal space!
- *n* is band number from the solution of reduced spectral problem with PBC.
- only one reciprocal cell \rightarrow finite volume problem.
- e^{ikr} invariant with respect k = k+G, where G is translation vector.

 $e^{i{f k}{f r}}$

 $\psi_{\mathbf{k},n}(\mathbf{x}) = u_{\mathbf{k},n}(\mathbf{x})e^{i\mathbf{k}\mathbf{x}}$

- Fourier coefficients stored in regular grid.
- Not atom-centered \rightarrow unbiased.
- Efficient FFT algorithms between r- and G-space representation.
- Complete and orthonormal basis set.
- Systematically improvable by increasing the cut-off radius.
- $O(N^2)$ scaling on CPU.

- set of basis coefficients. • Large Hamiltonian cannot be stored.
- Calculation of vacuum as expensive as atoms.
- Sharp nodes of wave functions of core electrons are very expensive. Need pseudo-potential.

- Fourier coefficients stored in regular grid.
- Not atom-centered \rightarrow unbiased.
- Efficient FFT algorithms between r- and G-space representation.
- Complete and orthonormal basis set.
- Systematically improvable by increasing the cut-off radius.
- $O(N^2)$ scaling on CPU.

- Large set of basis coefficients. Hamiltonian cannot be stored.
- Calculation of vacuum as expensive as atoms.
- Sharp nodes of wave functions of core electrons are very expensive. Need pseudo-potential.

Pseudopotentials

Cutoff radius

All-electron potential

When a plane-wave basis is not good

Localized basis set

Can be localized on atoms and vacuum is not calculated.

No need to localize on atoms, but the vacuum is calculated.

Plane-wave basis set

Ideas behind the Lab 4

- Learn how to perform DFT calculations for crystals
- Get familiar with plane-wave basis set
- **Get familiar** with electronic band structure
- Get familiar with phonon calculations

Construction of crystals for VASP

VESTA visualization program

Visualization program for structural models, volumetric data such as electron/nuclear densities, and crystal morphologies. Some of the novel features of VESTA are listed below.

VESTA visualization program

Visualization program for structural models, volumetric data such as electron/nuclear densities, and crystal morphologies. Some of the novel features of VESTA are listed below.

Lab 4. Set up VASP and files

Settings the Lab on the Virtual Machine

Credentials for the Virtual Machine: 'your_login'@10.30.16.180 'your password'

Download archive with Lab files for silicon.

Download archive with Lab files for TiC.

Upload the archive to the Virtual Machine:

scp lab4 silicon.zip a.burov@10.30.16.180:

Login to the Virtual Machine and unzip the archive:

unzip lab4 silicon.zip

Lab 4. VASP basics

VASP units

- Mass m_a
- Energy eV
- Distance Å
- Force eV/Å
- Stresses kBar, divide by 10 to get GPa
- Charge elementary charge
- Dipole electrons•Å
- Temp K
- Time fs (default, used in AIMD)

How to use VASP

To find input files for your calculations, you need go to lab4 silicon/sampleinputs

To run: vasp std > vasp.log

Note: the following input files should be in the current directory:

- **POSCAR** contains crystal structure
- INCAR – control parameters
- **KPOINTS** *k*-mesh in reciprocal space
- **POTCAR** *PAW* potential file

POSCAR (input structure)

Si			# just any nar
1.000			# multiplier :
0.00	2.71	2.71	<i># Lattice vec</i>
2.71	0.00	2.71	<i># Lattice vec</i>
2.71	2.71	0.00	<i># Lattice vec</i>
Si C			
2 2			# N atom for e
Direct			# type of coor
0.00	0.00	0.00	# atom 1 Si
0.25	0.25	0.25	# atom 2 Si
0.00	0.00	0.00	# atom 1 C
0.25	0.25	0.25	# atom 2 C

18

me

- for vec
 - 1, A
 - 2, A
 - 3, A

each type rdinates

POTCAR (pseudopotential)

PAW_PBE Li 17Jan2003 # version 1.000000000000000 # N of valence electrons parameters from PSCTR are: VRHFIN = Li: s1p0 # electronic configuration LEXCH = PE # exch. cor PBE EATOM = 5.3001 eV # energy of atom in vacuum, it is subtracted from output total energy

POTCAR for several elements

For instance, for SiC system you should run cat Si/POTCAR C/POTCAR > POTCAR

Note, the order should be the same as types of atoms follow in POSCAR

KPOINTS (sampling of reciprocal space)

Automatic Mesh \bigcirc Monkhorst Pack 999 0 0 0

INCAR basic (control parameters)

- ENCUT = 300# eV, energy cut-off
- ISIF = 3# full optimization
- ISMEAR = 2# Smearing method, Methfessel-Paxton
- **KSPACING = 0.1** # spacing of k points, can be used instead of KPOINTS file

INCAR reasonable (control parameters)

- SYSTEM = 2 Li; # name

- NSW = 20
- ENCUT = 150
- IBRION = 1
- ISIF = 3
- ISMEAR = 2
- SIGMA = 0.2
- NBANDS = 4

EDIFF = 0.0001 # eV, stopping criteria of SCF **EDIFFG = -0.01** # eV/A, stopping criteria of relaxation # number of relaxation steps # eV, energy cut-off # optimization algo # full optimization # Smearing method, Methfessel-Paxton # eV, smearing broadening # number of bands

Output files

CONTCAR - file with output structure, the same format as **POSCAR**

- **OUTCAR** main file with energies, etc.
- **CHGCAR** charge density file
- **WAVECAR** wave function file
- **EIGENVAL** Kohn-Sham energies at k required for band structure plotting

And others. For more details, see <u>VASP manual</u>.

Output file (grep commands)

grep reached OUTCAR - check that calculation is finished

grep TOTEN OUTCAR - print total energy at each SCF step

grep 'energy without entropy' OUTCAR - print total energy after each relax step use energy(sigma->0) extrapolated energy

Output file (grep commands)

grep 'in kB' OUTCAR

- print stress tensor after each relax step, multiply by 100 to get MPa residual stress of 100 MPa is OK for most solids

grep -A 3 TOTAL OUTCAR - print positions and forces

grep E-fermi OUTCAR - print Fermi energy in eV

Lab 4. Silicon

0. Slurm task manager

sbatch <task name.sh> - submit task task name.sh

squeue - status of submitted tasks JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON) 26164 class em.sh a.burov R 0:02 1 cest-cms-amm

scancel <JOBID> - cancel the task with id: JOBID

28 For more details, see <u>Slurm manual</u>.

1. Geometry optimization

- ENCUT = 600
- EDIFFG = -0.01
- ISIF = 3
- IBRION = 2
- NSW = 100
- ISMEAR = 0

- # eV, energy cut-off
- # force stopping criteria, 0.01 eV/A
 - # full optimization
 - # Quasi-Newton
 - # Maximum Number of steps for optimization
- # Smearing method, Gaussian
- SIGMA = 0.1# Smearing
- **LWAVE = .FALSE.** # do not save WAVECAR usually huge ~1-10 GB

EDIFFG reads as eV/A^3 for stresses. See "Total" in OUTCAR and divide by N_{at}

1. Geometry optimization

- The information on optimization routine is stored in **OUTCAR** file.
 - Can be examined with grep commands.
 - The optimized structure is located in **CONTCAR** file.

ored in **OUTCAR** file. mmands.

2. Equation of state

- 1. Perform optimization of atomic positions and cell shape (ISIF=4 or ISIF=1, ISIF=2 (option with 2 calculates the full stress tensor) for different volumes (lattice constants) of an input cell.
- 2. Construct an equation of state (EOS). Birch–Murnaghan isothermal equation:

$$egin{aligned} P(V) &= rac{3B_0}{2} \left[\left(rac{V_0}{V}
ight)^{7/3} - \left(rac{V_0}{V}
ight)^{5/3}
ight] \left\{ 1 + rac{3}{4} \left(B'_0 - 4
ight) \left[\left(rac{V_0}{V}
ight)^{2/3} - 1
ight]
ight\} \ B_0 &= -V igg(rac{\partial P}{\partial V} igg)_{P=0} \qquad B'_0 = igg(rac{\partial B}{\partial P} igg)_{P=0} \end{aligned}$$

31 3. Find a minimum volume and perform the optimization for it.

2. Equation of state

EOS, constructed with **<u>SIMAN</u>** package

3. Vibrational frequencies at Γ point

- PREC = Accurate
- ENCUT = 250
- ISMEAR = 0
- SIGMA = 0.1
- **IBRION = 6** # only symmetry inequivalent
- **POTIM = 0.015** # step size for finite difference method
- LWAVE = .FALSE.

uivalent te difference method

3. Vibrational frequencies at Γ point

'THz' OUTCAR freq - find vibrational modes in OUTCAR grep

1	f	=	15.069650	THz	94.685406	2Pi THz	502.
2	f	=	15.069650	THz	94.685406	2Pi THz	502.
3	f	=	15.069650	THz	94.685406	2Pi THz	502.
4	f	=	0.000000	THz	0.00002	2Pi THz	0.
5	f	=	0.000000	THz	0.000000	2Pi THz	0.
6	f/	i=	0.000000	THz	0.00001	2Pi THz	0.

- 669417 cm-1
- 669417 cm-1
- 669417 cm-1
- 000000 cm-1
- 000006 cm-1

- 62.323087 meV
- 62.323087 meV
- 62.323087 meV
- 000009 cm-1 0.000001 meV
 - 0.000000 meV
 - 0.000001 meV

4. Elastic constants

- PREC = NormalENCUT = 250ISMEAR = 0SIGMA = 0.1IBRION = 6ISIF = 3#only symmetry inequivalent #step size for finite difference method POTIM = 0.015
- LWAVE = .FALSE.

4. Elastic tensor

-10 "ELASTIC MODULI" OUTCAR elastic | tail -11 grep

TOTAL ELASTIC MODULI (kBar)							
Direction	XX	YY	ZZ	XY	ΥZ	ZX	
XX	1535.0824	561.8363	561.8363	0.0000	-0.0000	-0.0000	
ΥY	561.8363	1535.0824	561.8363	0.0000	-0.0000	-0.0000	
ZZ	561.8363	561.8363	1535.0824	0.0000	-0.0000	-0.0000	
XY	0.0000	0.0000	0.0000	751.5350	-0.0000	-0.0000	
YZ	-0.0000	-0.0000	-0.0000	-0.0000	751.5350	0.0000	
ZX	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	751.5350	

To calculate elastic constants, you may use MechElastic software.

5. Band structure (INCAR)

- ICHARG = 11# obtain the eigenvalues (for band-structure plots) or the density of states (DOS)
- ENCUT = 250
- ISMEAR = 0
- SIGMA = 0.01
- LWAVE = .FALSE.

5. Band structure (KPOINTS)

kpoints for	r bandstr	ucture L-G	-X-U K-G
40	! 40 in	tersection	S
line	! line	mode	
reciprocal	! type	of coordin	ates
0.50000	0.50000	0.50000	!L
0.00000	0.00000	0.00000	!G
0.00000	0.00000	0.00000	!G
0.00000	0.50000	0.50000	! X
0.00000	0.50000	0.50000	!X
0.25000	0.62500	0.62500	!U
0.37500	0.7500	0.37500	! K
0.00000	0.00000	0.00000	!G

To generate KPOINTS file for band structure calculations, you may use <u>SeekPath</u> soft.

5. Band structure

Extra materials

- <u>Vasp manual</u> all theory and input parameters for VASP
- Visualization of DOS plots: <u>ASE</u>, <u>Pymatgen</u>, <u>Sumo</u>, <u>PyProcar</u>, <u>SIMAN</u>

Visualization software VESTA

VASP tutorials – <u>Official tutorials</u>, <u>some other</u>

