DFT-calculations for LiB as SEI and anode material Li₃V₂O₅: structure and properties

T

Elizaveta Morkhova Alexandr Ryabin Maria Solovieva

Outline

1. LiB:

DFT-NEB simulation of Li diffusion in LiB solid electrolyte and calculation of the migration barrier

- Optimization of structure (cell parameters)
- Supercell creation
- NEB calculation

2. Li₃V₂O₅

DFT-modeling of Li^+ -intercalation in the $Li_3V_2O_5$ anode material

- CIF-creation from literature data and optimization
- Calculation of Li insertion
- Intercalation potentials & volume change calculations

Simulation of Li diffusion in LiB **Optimization & Supercell creation** Li V, Å³ **Structure** a, Å c, Å - B **x=120**° 4 atoms 3.115 43.448 4.013 Initial Optimized 43.482 4.01 3.12 2×2×2 3×3×2 Skoltech 32 atoms 72 atoms

Simulation of Li⁺ diffusion in LiB. NEB-calculation

Skoltech

Supercell	<i>Е_т</i> (РАТН 1), eV	<i>E_m</i> (PATH 2), eV	Calculation time, hour
2x2x2	0.12	0.38	~1
3x3x2	0.17	0.37	~6.5

5

Simulation of Li⁺-ion diffusion in LiB. VP & BVS methods

3D Li⁺-ion migration map (brown lines) in crystallochemical and BVS methods

 E_m (Li⁺) = 0.06 eV

DFT-modeling of Li⁺-intercalation in Li₃V₂O₅ anode material

nature > articles > article

Article Published: 02 September 2020

A disordered rock salt anode for fast-charging lithiumion batteries

Haodong Liu, Zhuoying Zhu, [...] Ping Liu 🖂

Nature 585, 63–67 (2020) Cite this article

24k Accesses | 79 Citations | 191 Altmetric | Metrics

DRS-Li₃V₂O₅, Space Group: Fm3m

a=b=c 4.095(1) Å,

Neutron pattern: Rwp= 2.76%

X-ray pattern: Rwp= 2.37%

Atom type	WyckSymb	x	у	z	Occupancy
Li	4b	0	0	0.5	0.52(1)
v	4b	0	0	0.5	0.4
0	4a	0	0	0	1
Li	8c	0.25	0.25	0.25	0.04(1)

DFT-modeling of Li^+ intercalation in $Li_3V_2O_5$ anode material

Compound	V, Å ³	a, Å
Initial Li ₃ V ₂ O ₅	68.77(1)	4.097(1)
Optimized Li ₃ V ₂ O ₅	65.548	4.03
Initial Li ₅ V ₂ O ₅	72.56(9)	4.171(3)
Optimized Li5V2O5	85.559	4.41

$V = -\frac{E(Li_{x_1}V_2O_5) - E(Li_{x_1}V_2O_5)}{(x_1)}$	$(x_2 V_2 O_5) - (x_1 - x_2)E(Li)$ - $(x_2 - x_2)e$

Li₅V₂O₅: Li-Li = 1.7 Å

LiCoO2: Li-Li = 2.9 Å

r(Li_{tetra}) = 0.59 Å r(Li_{oct}) = 0.76 Å

Used pseudopotential	Intercalation potential, V	Volume increase
PBE	-2.16	32%
PBE-U	-0.88	31%
PBE-U + magnetic	0.22	35%
Experimental data	0.6	1.8%

thx.

Skoltech